1 |
ZHANG P , ZHAO Y , ZHANG X B . Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries[J]. Chemical Society Reviews, 2018, 8: 2921-3004.
|
2 |
AURBACH D , MCCLOSKEY B D , NAZAR L F , et al .Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nature Energy, 2016, 11: doi: 10.1038/nenergy.2016.128.
|
3 |
SHEN X , LIU H , CHENG X B , et al .Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175.
|
4 |
LYU Z Y, ZHOU Y , DAI W R , et al . Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries[J]. Chemical Society Reviews, 2017, 19: 6046-6072.
|
5 |
任警, 黄志梅, 沈越, 等 . 一种新型的脲类溶剂在锂空气电池中的应用[J]. 储能科学与技术, 2018, 7(4): 667-673.
|
|
REN J , HUANG Z M , SHEN Y , et al .Achieving high performance lithium-O2 battery by introducing a novel urea electrolyte[J]. Energy Storage and Science Technology, 2018, 7(4): 667-673.
|
6 |
ZHANG W , HUANG Y , LIU Y , et al .Strategies toward stable nonaqueous alkali metal-O2 batteries[J]. Advanced Energy Materials, 2019, 24:doi: 10.1002/aenm.201900464.
|
7 |
CHENG X B , ZHANG R , ZHAO C Z , et al . Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 15: 10403-10473.
|
8 |
FENG N N , HE P , ZHOU H S .Critical challenges in rechargeable aprotic Li-O2 batteries[J]. Advanced Energy Materials, 2016, 9: doi: 10.1002/aenm.201502303.
|
9 |
WU S C , ZHU K , TANG J , et al . A long-life lithium ion oxygen battery based on commercial silicon particles as the anode[J]. Energy & Environmental Science, 2016, 10: 3262-3271.
|
10 |
HIRSHBERG D , SHARON D , DE LA LLAVE E , et al .Feasibility of full (Li-ion)-O2 cells comprised of hard carbon anodes[J]. ACS Applied Materials & Interfaces, 2017, 5: 4352-4361.
|
11 |
DENG H , QIU F L , LI X , et al . A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method[J]. Electrochemistry Communications, 2017: 11-15.
|
12 |
LIU B , XU W , YAN P F , et al .Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes[J]. Advanced Functional Materials, 2016, 4: 605-613.
|
13 |
TONG B , HUANG J , ZHOU Z B , et al .The salt matters: Enhanced reversibility of Li-O2 batteries with a Li (CF3SO2)(n-C4F9SO2) n -based electrolyte[J]. Advanced Materials, 2018, 1: doi: 10.1002/adma.201704841.
|
14 |
FU K K , GONG Y H , LIU B Y , et al . Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 4: doi: 10.1126/sciadv.1601659.
|
15 |
ZHAO C Z , ZHANG X Q , CHENG X B , et al . An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[C]// Proceedings of the National Academy of Sciences of the United States of America, 2017, 42: 11069-11074.
|
16 |
张涛, 张晓平, 温兆银 .固态锂空气电池研究进展[J]. 储能科学与技术, 2016, 5: 702-712.
|
|
ZHANG T , ZHANG X P , WEN Z Y . Progress in rechargeable solid-state Li-air batteries[J]. Energy Storage and Science Technology, 2016, 5: 702-712.
|
17 |
XU J J , LIU Q C , YU Y , et al .In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries[J]. Advanced Materials, 2017, 24: doi: 10.1002/adma.201606552.
|
18 |
LIAO K M , WU S C , MU X W , et al . Developing a "water-defendable" and "dendrite-free" lithium-metal anode using a simple and promising GeCl4 pretreatment method[J]. Advanced Materials, 2018, 36: doi: 10.1002/adma.201705711.
|
19 |
HUANG Z M , REN J , ZHANG W , et al . Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an sei-forming additive[J]. Advanced Materials, 2018, 39: doi: 10.1002/adma.201803270.
|
20 |
YAN C , CHENG X B , YAO Y X , et al . An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 45: doi: 10.1002/adma.201804461.
|
21 |
LIU Y Y , XU X Y , JIAO X X , et al .Li x Ge containing ion-conductive hybrid skin for high rate lithium metal anode[J]. Chemical Engineering Journal, 2019, 371: 294-300.
|
22 |
LIN D C , LIU Y Y , CHEN W , et al .Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon[J]. Nano Letters, 2017, 6: 3731-3737.
|
23 |
LIU Q C , XU J J , YUAN S , et al .Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries[J]. Advanced Materials, 2015, 35: 5241-5247.
|
24 |
ZHANG X Q , CHENG X B , CHEN X , et al . Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 10: doi: 10.1002/adfm.201605989.
|
25 |
YAN C , CHENG X B , YAO Y X , et al . An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30: doi: 10.1002/adma.201804461.
|
26 |
PENG Z , ZHAO N , ZHANG Z , et al . Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains[J]. Nano Energy, 2017, 39: 662-672.
|
27 |
YANG C , YAO Y , HE S , et al . Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma.201702714.
|
28 |
LIU T , HU Q , LI X , et al . Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier[J]. Journal of Materials Chemistry A, 2019, 7: 20911-20918.
|
29 |
HOU Z , YU Y , WANG W , et al . Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11: 8148-8154.
|