储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1003-1016.doi: 10.12028/j.issn.2095-4239.2019.0111
陈晓轩1, 李晟1, 胡泳钢1, 郑时尧1, 柴云轩1, 李东江2, 左文华1, 张忠如1, 杨勇1
收稿日期:
2019-05-02
修回日期:
2019-06-10
出版日期:
2019-11-01
发布日期:
2019-11-01
通讯作者:
张忠如,高级工程师,研究方向为锂离子电池失效机理分析与电化学模拟,E-mail:zrzhang@xmu.edu.cn;杨勇,教授,研究方向为高能电池材料与电化学过程,E-mail:yyang@xmu.edu.cn。
作者简介:
陈晓轩(1995-),女,硕士研究生,研究方向为锂离子电池失效机理分析与电化学模拟,E-mail:cxx0205@126.com
基金资助:
CHEN Xiaoxuan1, LI Sheng1, HU Yonggang1, ZHENG Shiyao1, CHAI Yunxuan1, LI Dongjiang2, ZUO Wenhua1, ZHANG Zhongru1, YANG Yong1
Received:
2019-05-02
Revised:
2019-06-10
Online:
2019-11-01
Published:
2019-11-01
摘要: 镍钴锰三元层状氧化物(NCM)正极材料由于其优越的综合性能在动力/储能电池系统(ESS)领域得到广泛应用。虽然Ni含量的增加可提高三元材料的比容量及电池的能量密度,但相关电池体系的容量保持率和安全性将会变差。如何有效解决该矛盾是此类NCM电池所面临的关键问题。本文从NCM电池体系循环过程中常见的体相结构破坏和正极-电解液界面组成改变两方面失效现象出发,结合近年来国内外对NCM失效模式研究中所提出的新理论、方法、应用,从机械破坏、结构演变、电化学极化、化学副反应、正负极协同效应等多个角度对NCM材料的衰退机理提出见解,对指导电池用户合理制定充放电协议、缓解电动汽车(EV)里程焦虑乃至材料设计本身均有重要的指导及借鉴意义。
中图分类号:
陈晓轩, 李晟, 胡泳钢, 郑时尧, 柴云轩, 李东江, 左文华, 张忠如, 杨勇. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016.
CHEN Xiaoxuan, LI Sheng, HU Yonggang, ZHENG Shiyao, CHAI Yunxuan, LI Dongjiang, ZUO Wenhua, ZHANG Zhongru, YANG Yong. Failure mechanism of Li1+x(NCM)1-xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016.
[1] MAKIMURA Y, OHZUKU T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries[J]. J. Power Sources, 2003, 119-121:156-160. [2] LI L, FENG C, ZHENG H, et al. Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Journal of Electronic Materials, 2014, 43(9):3508-3513. [3] MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries:Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1):196-223. [4] MANTHIRAM A, SONG B, LI W A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6:125-139. [5] ZHAO W, ZHENG J, ZOU L, et al. High voltage operation of Ni-rich NCM cathodes enabled by stable electrode/electrolyte interphases[J]. Adv. Energy Mater. 2018, 8(19):doi:10.1002/aenm.201800297. [6] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Materials, 2009, 8:320-324. [7] ZHAO X, YIN Y, HU Y, et al. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/Carbon lithium-ion batteries at subzero ambient temperatures[J]. J. Power Sources, 2019, 418:61-73. [8] LIU S, SU J, ZHAO J, et al. Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures[J]. J. Power Sources, 2018, 393:92-98. [9] CABANA J, KWON B J, HU L. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Liion batteries[J]. Acc. Chem. Res., 2018, 51(2):299-308. [10] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603. [11] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li(NixCoyMnz)O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013, 233:121-130. [12] XIA Y, ZHENG J, WANG C, et al. Designing principle for Nirich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49:434-452. [13] YAN P, ZHENG J, LV D, et al. Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials[J]. Chem. Mater., 2015, 27(15):5393-5401. [14] ABDEL-GHANY A, ZAGHIB K, GENDRON F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12):4092-4100. [15] LEE K S, MYUNG S T, AMINE K, et al. Structural and electrochemical properties of layered Li(Ni1-2xCoxMnx)O2 (x=0.1-0.3) positive electrode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2007, 154(10):A971-A977. [16] LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. J. Power Sources, 2014, 261:285-291. [17] MU L, YUAN Q, TIAN C, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials[J]. Nat. Commun., 2018, 9(1):doi:10.1038/s41467-018-05172-x. [18] DE BIASI L, KONDRAKOV A O, GEßWEIN H, et al. Between scylla and charybdis:Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries[J]. J. Phys. Chem. C, 2017, 121(47):26163-26171. [19] MILLER D J, PROFF C, WEN J G, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Adv. Energy Mater., 2013, 3(8):1098-1103. [20] RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x ≤ 0.95) cathodes for high-energydensity lithium-ion batteries:Bulk or surface degradation?[J] Chem. Mater., 2018, 30(3):1155-1163. [21] LIM J M, HWANG T, KIM D, et al. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material[J]. Sci. RepUk, 2017, 7:doi:https://doi.org/10.1038/srep39669. [22] YAN P, ZHENG J, CHEN T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode[J]. Nat. Commun., 2018, 9(1):doi:https://doi.org/10.1038/s41467-018-04862-w. [23] 李建刚, 万春荣, 杨东平, 等. LiNi3/8Co2/8Mn3/8O2正极材料氟掺杂改性研究[J]. 无机材料学报, 2004, 19(6):1298-1306. LI J G, WAN C R, YANG D P, et al. Fluorine doping of LiNi3/8Co2/8Mn3/8O2 cathode material for lithium-ion batteries[J]. Journal of Inorganic Material, 2004, 19(6):1298-1306. [24] 唐爱东, 王海燕, 黄可龙, 等. 锂离子电池正极材料层状Li-Ni-CoMn-O的研究[J]. 化学进展, 2007, 19(9):1313-1321. TANG A D, WANG H Y, HUANG K L, et al. Layered L-in-Co-Mn-O as cathode materials for lithium ion battery[J]. Progress in Chemistry, 2007, 19(9):1313-1321. [25] LIU K, LIU Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Sci. Adv., 2018, 4(6):9820-9831. [26] KONDRAKOV A O, GEßWEIN H, GALDINA K, et al. Chargetransfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation[J]. J. Phys. Chem. C, 2017, 121(44):24381-24388. [27] ZHENG S, HONG C, GUAN X, et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. J. Power Sources, 2019, 412:336-343. [28] LEE W, MUHAMMAD S, KIM T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Adv. Energy Mater., 2018, 8(4):doi:https://doi.org/10.1002/aenm.201701788. [29] LIU H, LIU H, LAPIDUS S H, et al. Sensitivity and limitations of structures from X-ray and neutron-based diffraction analyses of transition metal oxide lithium-battery electrodes[J]. J. Electrochem. Soc., 2017, 164(9):A1802-A1811. [30] HAUSBRAND R, CHERKASHIN G, EHRENBERG H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials:Methodology, insights and novel approaches[J]. Materials Science and Engineering:B, 2015, 192:3-25. [31] HOELZEL M, SENYSHYN A, GILLES R, et al. Scientific review:The structure powder diffractometer SPODI[J]. Neutron News, 2007, 18(4):23-26. [32] KINO K, YONEMURA M, ISHIKAWA Y, et al. Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery[J]. Solid State Ionics, 2016, 288:257-261. [33] XIA S, MU L, XU Z, et al. Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries[J]. Nano Energy, 2018, 53:753-762. [34] BORODIN O, BEHL W, JOW T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphatebased electrolytes[J]. J. Phys. Chem. C, 2013, 117(17):8661-8682. [35] MOAHNTY D, DAHLBERG K, KING D M, et al. Modification of Ni-rich FCG NCM and NCA cathodes by atomic layer deposition:Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Sci. Rep., 2016, 6:doi:https://doi.org/10.1038/srep26532. [36] JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1):doi:https://doi.org/10.1002/aenm.201300787. [37] ALVA G, KIM C, YI T, et al. Surface chemistry consequences of Mgbased coatings on LiNi0.5Mn1.5O4 electrode materials upon operation at high voltage[J]. J. Phys. Chem. C, 2014, 118(20):10596-10605. [38] HAN J G, KIM K, LEE Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Adv. Mater., 2018, doi:https://doi.org/10.1002/adma.201804822. [39] SONG Y M, HAN J G, PARK S, et al. A multifunctional phosphitecontaining electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance[J]. J. Mater. Chem., A 2014, 2(25):9506-9513. [40] CHOI N S, YEON J T, LEE Y W, et al. Degradation of spinel lithium manganese oxides by low oxidation durability of LiPF6-based electrolyte at 60℃[J]. Solid State Ionics, 2012, 219:41-48. [41] HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Appl. Mater Interfaces, 2015, 7(15):8319-8129. [42] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transitionmetal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Ed. Engl, 2015, 54(15):4440-4457. [43] ANDERSSON A M, ABRAHAM D P, HAASCH R, et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. J. Electrochem. Soc., 2002, 149(10):A1358-A1369. [44] YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nat. Energy, 2018, 3(7):600-605. [45] MU L, LIN R, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Lett., 2018, 18(5):3241-3249. [46] LIU H, WOLF M, KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J]. Nano Lett., 2017, 17(6):3452-3457. [47] ZHENG J, LIU T, HU Z, et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2[J]. J. Am. Chem. Soc., 2016, 138(40):13326-13334. [48] PIECZINKA N P, LIU Z Y, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. J. Phys. Chem., C 2013, 117(31):15947-15957. [49] WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. J. Power Sources, 2014, 258:210-217. [50] ZHAN C, LU J, JEREMY K A, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems[J]. Nat. Commun., 2013, 4:doi:https://doi.org/10.1038/ncomms3437. [51] GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. J. Electrochem. Soc., 2017, 164(2):A389-A399. [52] LEUNG K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4(100) surfaces[J]. J. Phys. Chem. C, 2012, 116(18):9852-9861. [53] DELACOURT C, KWONG A, LIU X, et al. Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries[J]. J. Electrochem. Soc., 2013, 160(8):A1099-A1107. [54] LI W, LIU X, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries:A comprehensive evaluation on long-term cyclability[J]. Adv. Energy Mater., 2018, 8(15):doi:https://doi.org/10.1002/aenm.201703154. [55] OCHIDA M, DOMI Y, DOI T, et al. Influence of manganese dissolution on the degradation of surface films on edge plane graphite negative-electrodes in lithium-ion batteries[J]. J. Electrochem. Soc., 2012, 159(7):A961-A966. [56] ZHAN C, WU T, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-A critical review[J]. Energy & Environ. Sci., 2018, 11(2):243-257. [57] CHEN Y, ZHANG Y, CHEN B, et al. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating[J]. J. Power Sources, 2014, 256:20-27. [58] JU S H, KANG I S, LEE Y S, et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dualconductive polymer coating[J]. ACS Appl. Mater. Interfaces, 2014, 6(4):2546-2552. [59] PARK J S, MENG X, ELAM J W, et al. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries[J]. Chemistry of Materials, 2014, 26(10):3128-3134. [60] XIONG L, XU Y, TAO T, et al. Double roles of aluminum ion on surface-modified spinel LiMn1.97Ti0.03O4[J]. Journal of Materials Chemistry, 2011, 21(13):4937-4944. [61] LI J, BAGGWTTO L, MARTHA S K, et al. An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O45 V cathode with conventional electrolytes[J]. Adv. Energy Mater., 2013, 3(10):1275-1278. [62] LIU W, LI X, XIONG D, et al. Significantly improving cycling performance of cathodes in lithium ion batteries:The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44:111-120. [63] PARK J S, MENG X, ELAM J W, et al. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries[J]. Chem. Mater., 2014, 26(10):3128-3134. [64] BOLLOLI M, KALHOFF J, ALLOIN F, et al. Fluorinated carbamates as suitable solvents for LiTFSI-based lithium-ion electrolytes:Physicochemical properties and electrochemical characterization[J]. J. Phys. Chem. C, 2015, 119(39):22404-22414. [65] LIU J, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative-A promising electrolyte additive for high voltage lithium ion batteries:From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46:404-414. [66] ZHANG Z, HU L, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy Environ. Sci., 2013, 6(6):1806-1810. [67] HE M, SU C C, FENG Z, et al. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte[J]. Adv. Energy Mater., 2017, 7(15):doi:https://doi.org/10.1002/aenm.201700109. [68] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2):1379-1394. [69] YIM T, KANG K S, MUN J, et al. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials[J]. J. Power Sources, 2016, 302:431-438. [70] LEE Y S, LEE K S, SUN Y K, et al. Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode[J]. J. Power Sources, 2011, 196(16):6997-7001. [71] XIA L, XIA Y, LIU Z. Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries[J]. Electrochim. Acta, 2015, 151:429-436. [72] XU M, LI W, LUCHT B L. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithiumion batteries[J]. J. Power Sources, 2009, 193(2):804-809. [73] ZUO X, FAN C, XIAO X, et al. High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive[J]. J. Power Sources, 2012, 219:94-99. [74] LI B, WANG Y, RONG H, et al. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery[J]. J. Mater. Chem. A, 2013, 1(41):12954-12961. [75] MA X, HARLOW J E, LI J, et al. Editors' choice-Hindering rollover failure of Li(Ni0.5Mn0.3Co0.2)O2/graphite pouch cells during long-term cycling[J]. J. Electrochem. Soc., 2019, 166(4):A711-A724. [76] BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. J. Electrochem. Soc., 2013, 160(10):A1668-A1674. [77] LI D, DANILOV D L, GAO L, et al. Degradation mechanisms of C6/LiFePO4 batteries:Experimental Analyses of cycling-induced aging[J]. Electrochimica Acta, 2016, 210:445-455. [78] LI D, LI H, DANILOV D L, et al. Degradation mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 Li-ion batteries unraveled by non-destructive and post-mortem methods[J]. J. Power Sources, 2019, 416:163-174. [79] ZHANG Q, WHITE R E. Capacity fade analysis of a lithium ion cell[J]. J. Power Sources, 2008, 179(2):793-798. [80] LI X, KANG J, YANG Y, et al. A study on capacity and power fading characteristics of Li(Ni1/3Co1/3Mn1/3)O2-based lithium-ion batteries[J]. Ionics, 2016, 22(11):2027-2036. [81] BLOOM I, POTTER B G, JOHNSON C S, et al. Effect of cathode composition on impedance rise in high-power lithium-ion cells:Longterm aging results[J]. J. Power Sources, 2006, 155(2):415-419. [82] ANSEÁN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries:A mechanistic analysis of aging[J]. J. Power Sources, 2016, 321:201-209. [83] DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. J. Power Sources, 2012, 219:204-216. [84] AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials (Basel), 2013, 6(4):1310-1325. [85] De HOOG J, TIMMERMANS J M, IOAN-STROE D, et al. Combined cycling and calendar capacity fade modeling of a nickel-manganesecobalt oxide cell with real-life profile validation[J]. Applied Energy, 2017, 200:47-61. [86] CHRISTENSEN J. Modeling diffusion-induced stress in Li-ion cells with porous electrodes[J]. J. Electrochem. Soc., 2010, 157(3):A366-A380. [87] BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J. Power Sources, 2013, 241:680-689. [88] SCHMALSTIEG J, KäBITZ S, ECKER M, et al. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries[J]. J. Power Sources, 2014, 257:325-334. [89] PETIT M, PRADA E, SAUVANT-MOYNOT V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime[J]. Applied Energy, 2016, 172:398-407. [90] HUGGINS R A. Advanced batteries:Materials science aspects, chapter 15:57 Solid Electrolytes[M]. Germany:Springer, 2009:339-372. [91] ZHENG L, ZHU J, LU D D, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150:759-769. [92] ZHENG L, ZHU J, WANG G, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158:1028-1037. [93] LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. J. Power Sources, 2018, 373:40-53. [94] KOSTIANTYN T. Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559:467-469. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||