[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7:19.
[2] NITTA N, WU F, LEE J T, et al. Li-ion battery materials:present and future[J]. Materials Today, 2015, 18(5):252-264.
[3] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10):4271-4302.
[4] GOODENOUGH J B, PARK K-S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[5] HARKS P P R M L, MULDER F M, NOTTEN P H L. In situ methods for Li-ion battery research:A review of recent developments[J]. Journal of Power Sources, 2015, 288:92-105.
[6] BAK S M, SHADIKE Z, LIN R, et al. In situ/operando synchrotronbased X-ray techniques for lithium-ion battery research[J]. NPG Asia Materials, 2018, 10(7):563-580.
[7] 李超, 沈明, 胡炳文. 面向金属离子电池研究的固体核磁共振和电子顺磁共振方法[J]. 物理化学学报, 2019, 35:0001-0009. LI C, SHEN M, HU B W. Solid-state NMR and EPR methods for metal ion battery research[J]. Acta Physico-Chimica Sinica, 2019, 35:0001-0009.
[8] SIEGEL R, HIRSCHINGER J, CARLIER D, et al. 59Co and 6,7Li MAS NMR in polytypes O2 and O3 of LiCoO2[J]. The Journal of Physical Chemistry B, 2001, 105(19):4166-4174.
[9] MéNéTRIER M, SAADOUNE I, LEVASSEUR S, et al. The insulatormetal transition upon lithium deintercalation from LiCoO2:Electronic properties and 7Li NMR study[J]. Journal of Materials Chemistry, 1999, 9(5):1135-1140.
[10] CAREWSKA M, SCACCIA S, CROCE F, et al. Electrical conductivity and 6,7Li NMR studies of Li1+yCoO2[J]. Solid State Ionics, 1997, 93(3):227-237.
[11] PEETERS M P J, VAN BOMMEL M J, NEILEN-TEN WOLDE P M C, et al. A 6Li, 7Li and 59Co MAS NMR study of rock salt type LixCoO2 (0.48≤ x ≤ 1.05)[J]. Solid State Ionics, 1998, 112(1):41-52.[12 LEVASSEUR S, MéNéTRIER M, SUARD E, et al. Evidence for structural defects in non-stoichiometric HT-LiCoO2:Electrochemical, electronic properties and 7Li NMR studies[J]. Solid State Ionics, 2000, 128(1):11-24.
[13] LEVASSEUR S, MéNéTRIER M, DELMAS C. On the LixCo1-yMgyO2 system upon deintercalation:electrochemical, electronic properties and 7Li MAS NMR studies[J]. Journal of Power Sources, 2002, 112(2):419-427.
[14] GENG F, SHEN M, HU B, et al. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ 17O NMR[J]. Chemical Communications, 2019, 55(52):7550-7553.
[15] SHIMODA K, MURAKAMI M, TAKAMATSU D, et al. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode[J]. Electrochimica Acta, 2013, 108:343-349.
[16] HU B, LOU X, LI C, et al. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode[J]. Journal of Power Sources, 2019, 438:226954.
[17] NIEMöLLER A, JAKES P, EICHEL R A, et al. In operando EPR investigation of redox mechanisms in LiCoO2[J]. Chemical Physics Letters, 2019, 716:231-236.
[18] TREASE N M, SEYMOUR I D, RADIN M D, et al. Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2[J]. Chemistry of Materials, 2016, 28(22):8170-8180.
[19] LEIFER N, SRUR-LAVI O, MATLAHOV I, et al. LiNi0.8Co0.15Al0.05O2 cathode material:New insights via 7Li and 27Al magic-angle spinning NMR spectroscopy[J]. Chemistry of Materials, 2016, 28(21):7594-7604.
[20] ZENG D, CABANA J, BRéGER J, et al. Cation ordering in Li[NixMnxCo(1-2x)]O2-layered cathode materials:A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study[J]. Chemistry of Materials, 2007, 19(25):6277-6289.
[21] HARRIS K J, FOSTER J M, TESSARO M Z, et al. Structure solution of metal-oxide Li battery cathodes from simulated annealing and lithium NMR spectroscopy[J]. Chemistry of Materials, 2017, 29(13):5550-5557.
[22] STOYANOVA R, IVANOVA S, ZHECHEVA E, et al. Correlations between lithium local structure and electrochemistry of layered LiCo1-2xNixMnxO2 oxides:7Li MAS NMR and EPR studies[J]. Physical Chemistry Chemical Physics, 2014, 16(6):2499-2507.
[23] PADHI A K, NANJUNDASWAMY K S, MASQUELIER C, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J]. Journal of the Electrochemical Society, 1997, 144(8):2581-2586.
[24] PADHI A K, MANIVANNAN V, GOODENOUGH J B. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution[J]. Journal of the Electrochemical Society, 1998, 145(5):1518-1520.
[25] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1194.
[26] TUCKER M C, DOEFF M M, RICHARDSON T J, et al. Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries:A 7Li MAS NMR and SQUID study[J]. Journal of the American Chemical Society, 2002, 124(15):3832-3833.
[27] CABANA J, SHIRAKAWA J, CHEN G, et al. MAS NMR study of the metastable solid solutions found in the LiFePO4/FePO4 system[J]. Chemistry of Materials, 2010, 22(3):1249-1262.
[28] PIGLIAPOCHI R, O'BRIEN L, PELL A J, et al. When do anisotropic magnetic susceptibilities lead to large NMR shifts? exploring particle shape effects in the battery electrode material LiFePO4[J]. Journal of the American Chemical Society, 2019, 10.1021/jacs.9b04674:10.1021/jacs.1029b04674.
[29] DAVIS L J M, HEINMAA I, ELLIS B L, et al. Influence of particle size on solid solution formation and phase interfaces in Li0.5FePO4 revealed by 31P and 7Li solid state NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(11):5171-5177.
[30] LI C, SHEN M, LOU X, et al. Unraveling the redox couples of VIII/VIV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/Ex situ NMR[J]. The Journal of Physical Chemistry C, 2018, 122(48):27224-27232. |