储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1017-1023.doi: 10.19799/j.cnki.2095-4239.2019.0186

• 锂电池失效分析与测试技术专刊 • 上一篇    下一篇

锂离子电池中重要正极材料体系的磁共振研究进展

耿福山, 胡炳文   

  1. 华东师范大学物理与电子科学学院&上海市磁共振重点实验室, 上海 200062
  • 收稿日期:2019-08-22 修回日期:2019-08-24 出版日期:2019-11-01 发布日期:2019-09-19
  • 通讯作者: 胡炳文,研究员,从事磁共振与电池研究,E-mail:bwhu@phy.ecnu.edu.cn。
  • 作者简介:耿福山(1992-),男,博士研究生,研究方向为磁共振与电池,E-mail:545205908@qq.com
  • 基金资助:
    国家自然科学基金项目(21872055)。

Progress in magnetic resonance research of important cathode materials in lithium ion batteries

GENG Fushan, HU Bingwen   

  1. School of Physics and Electronic Science&Shanghai Key Laboratory of Magnetic Resonance, Shanghai 200062, China
  • Received:2019-08-22 Revised:2019-08-24 Online:2019-11-01 Published:2019-09-19

摘要: 锂离子电池得到了快速发展,并改变了我们的生活。锂离子电池正极材料的研究是提高电池性能的关键;而理解正极材料的性能与结构之间的关系、阐释正极材料的电化学反应机理(尤其是性能衰减与失效机理)有助于提高材料的能量密度和功率密度。磁共振技术(含核磁共振和顺磁共振)在过去三十多年的研究中不断进步,逐渐成为研究正极材料构效关系的关键技术之一。本文总结了几个重要的已经商业化的正极材料(LiCoO2、NCA、NMC和LiFePO4)的磁共振研究进展,展示了核磁共振、顺磁共振在正极材料构效关系研究中的重要作用;尤其值得一提的是原位技术的发展在电化学反应机理中逐渐显示出其重要性。本文有助于了解磁共振技术在电池材料研究中的重要价值,并进一步推动磁共振技术的发展。

关键词: 正极材料, 核磁共振, 顺磁共振

Abstract: Lithium-ion batteries have grown rapidly and have changed our lives. The research on the cathode materials of lithium ion battery is the key to improve the performance of the battery. Therefore, understanding the relationship between the structure-performance relationship and explaining the electrochemical reaction mechanism (especially the performance degradation and failure mechanism) of the cathode materials can help to improve the energy density and power density of the materials. Magnetic Resonance techniques, including NMR (nuclear magnetic resonance) and EPR (electron paramagnetic resonance), has been continuously improved during the past three decades of material research, and has gradually become one of the key technologies for studying the structure-performance relationship of cathode materials. NMR could be used to study light elements commonly found in battery materials such as Li, Na, F, P, C, H and O, while EPR can be employed to study transition metals such as Co, Ni, Mn, Fe and V. This paper summarizes the progress of magnetic resonance research on several important commercial cathode materials (LiCoO2, NCA, NMC and LiFePO4), and demonstrates the important role of NMR and EPR in the study of structureperformance relationship of cathode materials. It is emphasized here that the development of in-situ technology has gradually shown its importance to investigate the electrochemical reaction mechanism. This article will help to understand the important value of magnetic resonance technology in battery materials research and further promote the development of magnetic resonance technology.

Key words: cathode material, NMR, EPR

中图分类号: