[1] 陈立泉. 锂电池如何开动电动汽车走出国门[J]. 科技导报, 2016, 34(6):21-22. CHEN L Q. How can lithium-ion batteries drive electric cars abroad[J]. Science & Technology Review, 2016, 34(6):21-22.
[2] LIN D C, LIU Y Y, CUI Y, et al. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206.
[3] 张永龙, 夏会玲, 林久, 等. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6):994-1002. ZHANG Y L, XIA H L, LIN J, et al. Brief analysis the safety of solidstate lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6):994-1002.
[4] 赵宁, 李忆秋, 张静娴, 等. 纳米锂镧锆钽氧粉体复合聚氧化乙烯制备的固态电解质电化学性能的研究[J]. 储能科学与技术, 2016, 5(5):754-761. ZHAO N, LI Y Q, ZHANG J X, et al. Electrochemical performance of solid electrolytes consisting of Li6.4La3Zr1.4Ta0.6O12 nanopowders dispersed in polyethylene oxides[J]. Energy Storage Science and Technology, 2016, 5(5):754-761.
[5] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5):607-614. LI H, XU X X. R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):607-614.
[6] 余涛, 韩喻, 郭青鹏, 等. 锂盐对LAGP-PEO复合固体电解质及全固态LFP锂离子电池性能的影响[J]. 储能科学与技术, 2016, 5(5):735-744. YU T, HAN Y, GUO Q P, et al. Effect of lithium salt on electrochemical properties of LAGP-PEO solid composite electrolyte and solid state LiFePO4 lithium-ion battery[J]. Energy Storage Science and Technology, 2016, 5(5):735-744.
[7] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries:from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6):487-516.
[8] ZHANG H, LI C M, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes:Advances and perspectives[J]. Chemical Society Review, 2017, 46(3):797-815.
[9] MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes[J]. Progress in Polymer Science, 2018, 81:114-143.
[10] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4):16030.
[11] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9):682-686.
[12] BARTSCH T, STRAUSS F, HATSUKADE T, et al. Gas evolution in allsolid-state battery cells[J]. ACS Energy Letters, 2018, 3(10):2539-2543.
[13] LI J D, DONG S M, WANG C, et al. A study on the interfacial stability of the cathode/polycarbonate interface:Implication of overcharge and transition metal redox[J]. Journal of Materials Chemistry A, 2018, 6(25):11846-11852.
[14] REN Y Y, SHEN Y, LIN Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57:27-30.
[15] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10/11):1569-1574.
[16] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25):5334-5340.
[17] 李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7(2):188-193. LI H. All-solid lithium battery:Dream into reality[J]. Energy Storage Science and Technology, 2018, 7(2):188-193.
[18] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10):1-25.
[19] GONG Y, CHEN Y Y, ZHANG Q H, et al. Three-dimensional atomicscale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9(1):3341.
[20] NIE K H, HONG Y S, QIU J L, et al. Interfaces between cathode and electrolyte in solid state lithium batteries:Challenges and Perspectives[J]. Frontiers in Chemistry, 2018, 6:1-19.
[21] OHTA N, TAKADA K, ZHANG L Q, et al. Enhancement of the highrate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18(17):2226-2269.
[22] YAMAMOTO K, IRIYAMA Y, ASAKA T, et al. Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge-discharge reaction[J]. Electrochemistry Communications, 2012, 20:113-116.
[23] YAMAMOTO K, YOSHIDA R, SATO T, et al. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy[J]. Journal of Power Sources, 2014, 266:414-421.
[24] 张强, 姚霞银, 张洪周, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5(5):659-667. ZHANG Q, YAO X Y, ZHANG H Z, et al. Research progress on interfaces of all solid state lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):659-667.
[25] 陈骋, 凌仕刚, 郭向欣, 等. 固态锂二次电池关键材料中的空间电荷层效应:原理和展望[J]. 储能科学与技术, 2016, 5(5):668-677. CHEN C, LING S G, GUO X X, et al. Space charge layer effect in rechargeable solid state lithium batteries:Principle and perspective[J]. Energy Storage Science and Technology, 2016, 5(5):668-677.
[26] CHAI J C, LIU Z H, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2):1600377.
[27] MA J, CHEN B B, WANG L L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392:94-115.
[28] BESLI M M, XIA S, KUPPAN S, et al. Mesoscale chemomechanical interplay of the LiNi0.8Co0.15Al0.05O2 cathode in solid-state Polymer Batteries[J]. Chemistry of Materials, 2018, 31(2):491-501.
[29] NAKAYAMA M, WADA S, KUROKI S, et al. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes[J]. Energy & Environmental Science, 2010, 3(12):1995-2002.
[30] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithiumr/polymer cells[J]. Journal of Power Sources, 1999, 81:925-929.
[31] WANG C, ZHANG H, LI J D, et al. The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode[J]. Journal of Power Sources, 2018, 397:157-161.
[32] MONROE C, NEWMAN J. The effect of interfacial deformation on electrodeposition kinetics[J]. Journal of The Electrochemical Society, 2004, 151(6):A880-A886.
[33] YANG L Y, WANG Z J, FENG Y C, et al. Flexible composite solid electrolyte facilitating highly stable "soft contacting" Li-electrolyte interface for solid state sithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(22):1701437.
[34] CHAI J C, CHEN B B, XIAN F, et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O4/Li metal batteries[J]. Small, 2018, 14(37):1802244.
[35] ROSSO M, GOBRON T, BRISSOT C, et al. Onset of dendritic growth in lithium/polymer cells[J]. Journal of Power Sources, 2001, 97:804-806.
[36] TEYSSOT A, BELHOMME C, BOUCHET R, et al. Inter-electrode in situ concentration cartography in lithium/polymer electrolyte/lithium cells[J]. Journal of Electroanalytical Chemistry, 2005, 584(1):70-74.
[37] DOLLE M, SANNIER L, Beaudoin B, et al. Live scanning electron microscope observations of dendritic growth in lithium polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12):A286-A289.
[38] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In situ scanning electron microscopy detection of carbide aature of dendrites in Lipolymer batteries[J]. Nano Letters, 2018, 18(12):7583-7589.
[39] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1):69-73.
[40] HOVINGTON P, LAGACE M, GUERFI A, et al. New lithium metal polymer solid state battery for an ultrahigh energy:Nano C-LiFePO4 versus nano Li1.2V3O8[J]. Nano Letters, 2015, 15(4):2671-2678.
[41] ZHANG B, TAN R, YANG L Y, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10:139-159.
[42] DEVAUX D, HARRY K J, PARKINSON D Y, et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography[J]. Journal of The Electrochemical Society, 2015, 162(7):A1301-A1309.
[43] KOBAYASHI T, KOBAYASHI Y, TABUCHI M, et al. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4V class cathode, LiNi1/3Mn1/3Co1/3O2[J]. ACS Applied Materials & Interfaces, 2013, 5(23):12387-12393.
[44] SUN B, XU C, MINDEMARK J, et al. At the polymer electrolyte interfaces:The role of the polymer host in interphase layer formation in Li-batteries[J]. Journal of Materials Chemistry A, 2015, 3(26):13994-14000.
[45] MA J, LIU Z L, CHEN B B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solidstate lithium ion batteries[J]. Journal of The Electrochemical Society, 2017, 164(14):A3454-A3461.
[46] MOHL G E, METWALLI E, BOUCHET R, et al. In operando smallangle neutron scattering study of single-ion copolymer electrolyte for Li-metal batteries[J]. ACS Energy Letters, 2017, 3(1):1-6.
[47] MÖHL G E, METWALLI E, MULLER-BUSCHBAUM P. In operando smallangle X-ray scattering investigation of nanostructured polymer electrolyte for lithium-ion batteries[J]. ACS Energy Letters, 2018, 3(7):1525-1530. |