1 |
XIONG Rui, PAN Yue, SHEN Weixiang, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives[J]. Renewable Sustainable Energy Reviews, 2020, 131: doi: 10.1016/j.rser.2020.110048.
|
2 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable Sustainable Energy Reviews, 2017, 78: 834-854.
|
3 |
PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs (III): State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2): 277-292.
|
4 |
SHEN Yanqing. Adaptive extended Kalman filter based state of charge determination for lithium-ion batteries[J]. Electrochimica Acta, 2018, 283: 1432-1440.
|
5 |
田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750.
|
|
TIAN Maofei, AN Zhiguo, CHEN Xing, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750.
|
6 |
EL DIN M S, HUSSEIN A A, ABDEL-HAFEZ M F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408-417.
|
7 |
SHRIVASTAVA P, SOON T K, IDRIS M Y, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.06.040.
|
8 |
XIAO Renxin, SHEN Jiangwei, LI Xiaoyu, et al. Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods[J]. Energies, 2016, 9(3): doi: 10.3390/en9030184.
|
9 |
PILLER S, PERRIN M, JOSSEN A. Methods for state-of-charge determination and their applications[J]. Journal of Power Sources, 2001, 96(1): 113-120.
|
10 |
GARG A, SHAOSEN S, GAO L, et al. Aging model development based on multidisciplinary parameters for lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(4): 2801-2818.
|
11 |
SHU Xing, LI Guang, SHEN Jiangwei, et al. An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation[J]. Energy, 2020: doi: 10.1016/j.energy.2020.118262.
|
12 |
CHEN Zheng, XIAO Jiapeng, SHU Xing, et al. Model-based adaptive joint estimation of the state of charge and capacity for lithium-ion batteries in their entire lifespan[J]. Energies, 2020, 13(6): doi: 10.3390/en13061410.
|
13 |
TANG Xiaopeng, WANG Yujie, ZOU Changfu, et al. A novel framework for lithium-ion battery modeling considering uncertainties of temperature and aging[J]. Energy Conversion, 2019, 180: 162-170.
|
14 |
PUGALENTHI K, RAGHAVAN N. A holistic comparison of the different resampling algorithms for particle filter based prognosis using lithium ion batteries as a case study[J]. Microelectronics Reliability, 2018, 91: 160-169.
|
15 |
张禹轩. 电动汽车动力电池模型参数在线辨识及SOC估计[D]. 长春: 吉林大学, 2014.
|
16 |
LAI Xin, WANG Shuyu, MA Shangde, et al. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: doi: 10.1016/j.electacta.2019.135239.
|
17 |
CHEN Zheng, XUE Qiao, XIAO Renxin, et al. State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and elman neural network[J]. IEEE Access, 2019, 7: 102662-102678.
|
18 |
GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831.
|
19 |
HAN Xuebing, OUYANG Minggao, LU Languang, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54.
|
20 |
SADHU S, BHAUMIK S, DOUCET A, et al. Particle-method-based formulation of risk-sensitive filter[J]. Signal Processing, 2009, 89(3): 314-319.
|
21 |
JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794.
|