储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1790-1797.doi: 10.19799/j.cnki.2095-4239.2020.0142

• 储能材料与器件 • 上一篇    下一篇

基于热电制冷的动力电池模组散热性能研究

李俊伟(), 张恒运(), 吴笑宇, 王 影   

  1. 上海工程技术大学机械与汽车工程学院,上海 201620
  • 收稿日期:2020-04-13 修回日期:2020-04-20 出版日期:2020-11-05 发布日期:2020-10-28
  • 通讯作者: 张恒运 E-mail:a341203@hotmail.com;zhanghengyun@sues.edu.cn
  • 作者简介:李俊伟(1991—),男,硕士研究生,E-mail:a341203@hotmail.com
  • 基金资助:
    国家自然科学基金项目(51876113);上海科委重点项目(14520501100)

Heat dissipation performance of a power battery module based on thermoelectric cooling

Junwei LI(), Hengyun ZHANG(), Xiaoyu WU, Ying WANG   

  1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2020-04-13 Revised:2020-04-20 Online:2020-11-05 Published:2020-10-28
  • Contact: Hengyun ZHANG E-mail:a341203@hotmail.com;zhanghengyun@sues.edu.cn

摘要:

本文研究了基于热电制冷(TEC)的电动汽车电池模组散热性能。圆柱电池模组按3×5阵列排布,两侧对称布置热电制冷系统,采用理论分析建立了电池模组的一维热阻网络,以评估热性能。通过改变TEC电流、电池单体温度、冷热端热阻、TEC布置方式来研究TEC的最大制冷功率Qtot,制冷效能COP(coefficient of performance)和最佳工作电流。结果表明TEC的冷端温度随着TEC电流的增大呈先减小后增大趋势,而热端温度则随着TEC输入电流的增大而逐渐增大。制冷功率随TEC电流增大呈先增大后减小趋势,而TEC的COP值随着电流的增大而逐渐减小,电池温度在30~50 ℃下制冷效率在0.45~0.60之间。最大制冷功率对应的最佳工作电流在5.5~6.25 A之间。冷、热端热阻影响TEC的制冷功率和最佳制冷电流。其中,最大制冷功率对应的最佳TEC电流受热端热阻的影响较大,受冷端热阻的影响较小。

关键词: 热电制冷(TEC), 热管理, 热阻网络, 制冷性能, 稳态理论分析

Abstract:

This study investigates the thermoelectric cooling performance for a battery module. Cylindrical battery modules are arranged in a 3×5 array, and thermoelectric cooling systems are symmetrically arranged on both sides. A one-dimensional thermal resistance network of battery modules is established using a theoretical analysis to evaluate the thermal performance. The thermal resistance of the thermoelectric cooler (TEC) double-sided symmetric layout is obtained through an experimental measurement. The theoretical analysis method is used to study the maximum cooling power, COP, and optimal working current of the TEC by changing the TEC current, battery temperature, cold and hot-side thermal resistances, and TEC arrangement. The results show that the cold-side temperature of the TEC first decreases then increases with the TEC current increase, whereas the hot-side temperature gradually increases with the TEC input current increase. The cooling power first increases then decreases as the TEC current increases. The COP value of the TEC gradually decreases as the current increases. The cooling efficiency when the battery temperature is 30—50 ℃ is between 0.45 and 0.60. The optimal operating current corresponding to the maximum cooling power is between 5.50 A and 6.25 A. The cold- and hot-side thermal resistances affect the cooling power and the optimal cooling current of the TEC. The optimal TEC current corresponding to the maximum cooling power is greatly affected by the hot-side thermal resistance, but barely affected by the cold-side thermal resistance.

Key words: thermoelectric cooling (TEC), thermal management, thermal resistance network, thermoelectric cooling performance, steady state analysis

中图分类号: