1 |
ZHU Jiangong, KNAPP M, DARMA M S D, et al. An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application[J]. Applied Energy, 2019, 248: 149-161.
|
2 |
SHEN Ping, OUYANG Minggao, LU Languang, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 92-103.
|
3 |
YANG Zhuo, PATIL D, FAHIMI B. Electrothermal modeling of lithium-ion batteries for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 170-179.
|
4 |
TROVO A, SACCARDO A, GIOMO M, et al. Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations[J]. Journal of Power Sources, 2019, 424: 204-214.
|
5 |
ANDRE D, APPEL C, SOCZKA-GUTH T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013, 224: 20-27.
|
6 |
ZHOU Di, ZHENG Wenbin, FU Ping, et al. Research on online estimation of available capacity of lithium batteries based on daily charging data[J]. Journal of Power Sources, 2020, 451: 227713.
|
7 |
LAI Xin, WANG Shuyu, MA Shangde, et al. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: 135239.
|
8 |
刘小菡, 王顺利, 熊鑫, 等. 融合GM(1, 1)先验估计的扩展卡尔曼SOC估算[J]. 制造业自动化, 2020, 42(4): 150-153.LIU Xiaohan, WANG Shunli, XIONG Xin, et al. Extended kalman SOC estimation combining GM(1,1) prior estimates[J]. Manufacturing Automation, 2020, 42(4): 150-153.
|
9 |
尚丽平, 王顺利, 李占锋, 等. 基于放电试验法的机载蓄电池SOC估计方法研究[J]. 电源学报, 2014(1): 61-65.SHANG Liping, WANG Shunli, LI Zhanfeng, et al. Airborne battery soc estimate method study based on discharge test method[J]. Journal of Power Supply, 2014(1): 61-65.
|
10 |
徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960.XU Chao, LI Liwei, YANG Yuxin, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960.
|
11 |
韦海燕, 陈静, 王惠民, 等. 新陈代谢灰色粒子滤波实现电池剩余寿命预测[J]. 电工技术学报, 2020, 35(6): 1181-1188.Wei Haiyan, Chen Jing, Wang Huimin, et al. Remaining useful life prediction of battery using metabolic grey particle filter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1181-1188.
|
12 |
罗世昌, 杨进. 基于迭代卡尔曼粒子滤波器的锂电池SOC估算算法研究[J]. 工业控制计算机, 2019, 32(2): 104-106.
|
13 |
SONG Ziyou, HOU Jun, LI Xuefeng, et al. The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection[J]. Energy, 2020, 193: 66-77.
|
14 |
樊翠玲. 改进粒子滤波的锂电池SOC估算[J]. 实验室研究与探索, 2018, 37(1): 134-138.FAN Cuiling. Estimation of lithium battery SOC based on improved particle filter[J]. Research and Exploration in Laboratory, 2018, 37(1): 134-138.
|
15 |
XIONG Rui, ZHANG Yongzhi, HE Hongwen, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1526-1538.
|
16 |
徐文华, 王顺利, 于春梅, 等. 基于Thevenin模型和UKF的锂电池SOC估算方法研究[J]. 自动化仪表, 2020, 41(5): 31-36.XU Wenhua, WANG Shunli, YU Chunmei, et al. Research on the estimation method of lithium battery SOC based on Thevenin model and UKF[J]. Process Automation Instrumentation, 2020, 41(5): 31-36.
|
17 |
ZHANG Zhiyong, ZHANG Liuzhu, HU Lin, et al. Active cell balancing of lithium-ion battery pack based on average state of charge[J]. International Journal of Energy Research, 2020, 44(4): 2535-2548.
|
18 |
ZHANG Xi, GAO Yizhao, GUO Bangjun, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries[J]. Electrochimica Acta, 2020, 343: 136070.
|
19 |
WANG Ranran, FENG Hailin. Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter[J]. Journal of Power Electronics, 2020, 20(1): 270-278.
|
20 |
WANG Zhi, OUYANG Dongxu, CHEN Mingyi, et al. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6): 2239-2247.
|
21 |
XIE Fei, WANG Shunli, XIE Yanxin, et al. A novel battery state of charge estimation based on the joint unscented kalman filter and support vector machine algorithms[J]. International Journal of Electrochemical Science, 2020, 15(8): 7935-7953.
|
22 |
SONG Lingjun, LIANG Tongyi, LU Languang, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105516.
|