1 |
LIU M K, AO H S, JIN Y, et al. Aqueous rechargeable sodium ion batteries: Developments and prospects[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100432.
|
2 |
孙歌, 魏芷宣, 张馨元, 等. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265.
|
|
SUN G, WEI Z X, ZHANG X Y, et al. Recent progress of sodium-based inorganic solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265.
|
3 |
HAN L F, WANG J L, MU X W, et al. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes[J]. Journal of Colloid and Interface Science, 2021, 585: 596-604.
|
4 |
XU D, WANG B R, WANG Q, et al. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17809-17819.
|
5 |
WANG E H, CHEN M Z, LIU X H, et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode[J]. Small Methods, 2018, 3(4): 169-180.
|
6 |
WU F, ZHANG K, LIU Y R, et al. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects[J]. Energy Storage Materials, 2020, 33: 26-54.
|
7 |
ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, 58(26): 8681-8686.
|
8 |
CHEN Y, WEN K H, CHEN T H, et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces[J]. Energy Storage Materials, 2020, 31: 401-433.
|
9 |
ZHOU C T, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198.
|
10 |
AO H S, ZHAO Y Y, ZHOU J, et al. Rechargeable aqueous hybrid ion batteries: Developments and prospects[J]. Journal of Materials Chemistry A, 2019, 7(32): 18708-18734.
|
11 |
PALOMARES V, CASAS-CABANAS M, CASTILLO-MARTÍNEZ E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
|
12 |
MORENO J S, ARMAND M, BERMAN M B, et al. Composite PEOn: NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization[J]. Journal of Power Sources, 2014, 248: 695-702.
|
13 |
PUTRI R M, FLOWERI O, MAYANGSARI T R, et al. Preliminary study of electrochemical properties of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) composites as material for solid polymer electrolyte[J]. Materials Today: Proceedings, 2021, doi: 10.1016/j.matpr.2020.11.663.
|
14 |
杨菁, 刘高瞻, 沈麟, 等. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299.
|
|
YANG J, LIU G Z, SHEN L, et al. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Stroge Science and Technology, 2020, 9(5): 1284-1299.
|
15 |
GAO Z H, YANG J Y, YUAN H Y, et al. Stabilizing Na3Zr2Si2PO12/Na interfacial performance by introducing a clean and Na-deficient surface[J]. Chemistry of Materials, 2020, 32(9): 3970-3979.
|
16 |
HIRAOKA K, KATO M, KOBAYASHI T, et al. Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries[J]. The Journal of Physical Chemistry C, 2020, 124(40): 21948-21956.
|
17 |
HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291.
|
18 |
YI Q, ZHANG W Q, LI S Q, et al. Durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35039-35046.
|
19 |
YU X W, XUE L G, GOODENOUGH J B, et al. A high-performance all-solid-state sodium battery with a poly(ethylene oxide)-Na3Zr2Si2PO12 composite electrolyte[J]. ACS Materials Letters, 2019, 1(1): 132-138.
|
20 |
DAS S, GHOSH A. Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes[J]. The Journal of Physical Chemistry B, 2017, 121(21): 5422-5432.
|
21 |
GAO Y R, NOLAN A M, DU P, et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors[J]. Chemical Reviews, 2020, 120(13): 5954-6008.
|
22 |
YU W H, ZHAI Y F, YANG G M, et al. A composite electrolyte with Na3Zr2Si2PO12 microtube for solid-state sodium-metal batteries [J]. Ceramics International, 2020, 47(8): 11156-11168.
|
23 |
KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.30
|
24 |
AKHTAR M S, KWON S J, STADLER F J, et al. High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes[J]. Nanoscale, 2013, 5(12): 5403-5411.
|
25 |
ZHUANG H, MA W C, XIE J W, et al. Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2020, doi: 10.1016/j.jallcom.2020.157915.
|
26 |
LIM Y J, HAN J, KIM H W, et al. An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(29): 14528-14537.
|