储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 925-930.doi: 10.19799/j.cnki.2095-4239.2021.0027

• 固态离子学与储能专刊 • 上一篇    下一篇

Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能

蒋苗1,2(), 万红利1, 刘高瞻1,2, 翁伟1,2, 王超1, 姚霞银1,2()   

  1. 1.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
    2.中国科学院大学,北京 100049
  • 收稿日期:2021-01-19 修回日期:2021-02-14 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 姚霞银 E-mail:jiangmiao@nimte.ac.cn;yaoxy@nimte.ac.cn
  • 作者简介:蒋苗(1995—),男,硕士研究生,从事全固态锂电池正极材料研究,E-mail:jiangmiao@nimte.ac.cn
  • 基金资助:
    国家自然科学基金(51872303);浙江省自然科学基金(LD18E020004);中国科学院青年创新促进会(2017342┫项目)

Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries

Miao JIANG1,2(), Hongli WAN1, Gaozhan LIU1,2, Wei WENG1,2, Chao WANG1, Xiayin YAO1,2()   

  1. 1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
    2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-01-19 Revised:2021-02-14 Online:2021-05-05 Published:2021-04-30
  • Contact: Xiayin YAO E-mail:jiangmiao@nimte.ac.cn;yaoxy@nimte.ac.cn

摘要:

全固态锂电池采用金属硫化物FeS2作为正极材料能实现较高的可逆比容量,但是循环过程中较大的应力/应变和不良的固固接触引起的界面失效,严重影响了其在全固态锂电池中的电化学性能。本工作采用溶剂热法制备了Co掺杂FeS2的纳米颗粒,随后在Co0.1Fe0.9S2纳米颗粒表面原位沉积离子电导率较高的Li7P3S11固体电解质,获得Co0.1Fe0.9S2@Li7P3S11纳米复合材料,并将其应用于全固态锂电池中,过渡金属Co的掺杂能提高FeS2的电化学反应动力学性能,而Li7P3S11固体电解质原位包覆能进一步改善固固接触,提高界面锂离子传输特性,继而提高全固态锂电池电化学性能。进一步通过透射电子显微镜(TEM)表征,证实了Li7P3S11固体电解质包覆在Co0.1Fe0.9S2纳米颗粒表面。电化学测试表明,Li7P3S11固体电解质颗粒的包覆能有效提高以FeS2为活性物质的全固态锂电池的充放电比容量和循环稳定性。Co0.1Fe0.9S2@Li7P3S11复合材料在200 mA/g的电流密度下,首次放电比容量达到882.1 mA·h/g,循环100圈后放电比容量仍保持在670.9 mA·h/g。本研究有助于推动金属硫化物正极材料在全固态锂电池中的应用,从而为实现更高能量密度的全固态锂电池提供实验依据。

关键词: 全固态锂电池, 掺杂, 原位沉积, 纳米颗粒

Abstract:

All-solid-state lithium batteries with metal sulfide pyrite (FeS2) as cathode can achieve a high reversible specific capacity. However, the large stress/strain and poor solid-solid contact during cycling seriously impedes the electrochemical performances of all-solid-state lithium batteries. In this work, Co-doped FeS2 nanoparticles are synthesized by the solvothermal method, and the Li7P3S11 solid electrolytes are in-situ coated on the surface of Co0.1Fe0.9S2 nanoparticles to form Co0.1Fe0.9S2@Li7P3S11 nanocomposite materials. The doping of the transition metal Co can improve the electrochemical reaction kinetics of FeS2, and the in-situ coating of Li7P3S11 solid electrolyte can further improve the solid-solid contact and lithium-ion transportation at the interface, which results in excellent electrochemical performances of the all-solid-state lithium batteries. Transmission electron microscopy observation confirms that Li7P3S11 solid electrolyte is coated on the surface of Co0.1Fe0.9S2 nanoparticles. Electrochemical performance tests show that the coating of Li7P3S11 solid electrolyte can effectively improve the specific capacity and cycling stability of FeS2-based all-solid-state lithium batteries. The Co0.1Fe0.9S2@Li7P3S11 composite cathode delivers a high discharge capacity of 882.1 mA·h/g at 200 mA g-1 and maintains a value of 670.9 mA·h/g after 100 cycles. This work can promote the application of metal sulfide cathode materials for all-solid-state lithium batteries and provide experimental evidence for the development of all-solid-state lithium batteries with a higher energy density.

Key words: all-solid-state lithium battery, doping, in-situ deposition, nanoparticles

中图分类号: