1 |
CHEN W, LEI T, WU C, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702348.
|
2 |
JI X L, LEE K T, NAZAR L F, et al. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
|
3 |
MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
|
4 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
|
5 |
谷穗, 靳俊, 卢洋, 等. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6(5): 1026-1040.
|
|
GU S, JIN J, LU Y, et al. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040.
|
6 |
WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): doi: 10.1002/adma.202000751.
|
7 |
HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms1843.
|
8 |
LIN Z, LIANG C. Lithium-sulfur batteries: From liquid to solid cells[J]. Journal of Materials Chemistry A, 2014, 3(3): 936-958.
|
9 |
高静, 任文锋, 陈剑. 全固态锂硫电池的研究进展[J]. 储能科学与技术, 2017, 6(3): 557-571.
|
|
GAO J, REN W F, CHEN J. Research progress of all solid-state lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 557-571.
|
10 |
ZHANG Q, DING Z, LIU G, et al. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2019, 23: 168-180.
|
11 |
ZHANG Q, WAN H, LIU G, et al. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 771-782.
|
12 |
SHAO-HORN Y, OSMIALOWSKI S, HORN Q C. Nano-FeS2 for commercial Li/FeS2 primary batteries[J]. Journal of the Electrochemical Society, 2002, 149(11): doi: 10.1149/1.1513558.
|
13 |
TAO Y, RUI K, WEN Z, et al. FeS2 microsphere as cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2016, 290: 47-52.
|
14 |
ZHU Y, FAN X, SUO L, et al. Electrospun FeS2@Carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries[J]. ACS Nano, 2016, 10(1): 1529-1538.
|
15 |
WAN H, LIU G, LI Y, et al. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries[J]. ACS Nano, 2019, 13(8): 9551-9560.
|
16 |
ZHANG H, WANG L, LI Q, et al. Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries[J]. Carbon, 2018, 140:385-393.
|
17 |
ZHANG Q, MWIZERWA J P, WAN H L, et al. Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost[J]. Journal of Materials Chemistry A, 2017, 5(45): 23919-23925.
|
18 |
DOUGLAS A, CARTER R, OAKES L, et al. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries[J]. ACS Nano, 2015, 9(11): 11156-11165.
|
19 |
SHI J, LIU G, WENG W, et al. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14079-14086.
|