储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2269-2282.doi: 10.19799/j.cnki.2095-4239.2021.0156
刘霏霏1(), 鲍荣清1, 程贤福1, 李骏1, 秦武1, 杨超峰2
收稿日期:
2021-04-13
修回日期:
2021-05-18
出版日期:
2021-11-05
发布日期:
2021-11-03
通讯作者:
刘霏霏
E-mail:daisy-lff@163.com
作者简介:
刘霏霏(1983—),女,博士,讲师,研究方向为电动汽车热管理及环境适应性研究、动力电池热-电耦合复杂系统,E-mail:基金资助:
Feifei LIU1(), Rongqing BAO1, Xianfu CHENG1, Jun LI1, Wu QIN1, Chaofeng YANG2
Received:
2021-04-13
Revised:
2021-05-18
Online:
2021-11-05
Published:
2021-11-03
Contact:
Feifei LIU
E-mail:daisy-lff@163.com
摘要:
随着电动汽车的广泛使用,锂离子动力电池俨然成为纯电动汽车首选的动力来源,然而其热安全性问题也日益突出。基于此,本文针对车用锂离子动力电池在服役工况下尤其高温时存在的安全性差、工作不可靠及循环寿命短等热问题,根据电池的动态散热特性着重介绍了车用锂离子动力电池常用的冷却方法,包括空冷散热、液冷散热、相变材料冷却、热管冷却和耦合散热,说明了集多种冷却方式耦合的热管理系统与单一散热方法相比不仅能提高散热效率,还可以改善电池的均温性。并结合上述散热方法的研究进展及关键技术,主要在空冷通道优化、液冷结构设计及冷却液介质分析、相变材料应用特性、热管的冷却特性及热特性等方面进行了具体综述。最后,针对目前常用的动力电池散热方法中存在的问题提出了合理化建议,展望了电池热管理系统与汽车乘员热舒适性、电动机舱热管理及车辆热环境相耦合,形成整车热管理系统的开发,以期为电池热管理系统设计开发等相关领域的研究提供一定参考。
中图分类号:
刘霏霏, 鲍荣清, 程贤福, 李骏, 秦武, 杨超峰. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 2269-2282.
Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282.
1 | 伍赛特. 混合动力列车的应用前景展望[J]. 交通节能与环保, 2019, 15(4): 117-121. |
WU S T. Prospect of application of hybrid trains[J]. Transport Energy Conservation & Environmental Protection, 2019, 15(4): 117-121. | |
2 | PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1093-1102. |
3 | RITCHIE A, HOWARD W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 809-812. |
4 | YE Y H, SAW L H, SHI Y X, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281-291. |
5 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
6 | 杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256. |
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256. | |
7 | 彭鹏, 孙忆琼, 蒋方明. 钴酸锂电池烤箱热滥用模拟及热行为分析[J]. 化工学报, 2014, 65(2): 647-657. |
PENG P, SUN Y Q, JIANG F M. Numerical simulations and thermal behavior analysis for oven thermal abusing of LiCoO2 lithium-ion battery[J]. CIESC Journal, 2014, 65(2): 647-657. | |
8 | GEPP M, FILIMON R, KOFFEL S, et al. Advanced thermal management for temperature homogenization in high-power lithium-ion battery systems based on prismatic cells[C]//2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil. IEEE, 2015: 1230-1235. |
9 | BUGRYNIEC P J, DAVIDSON J N, BROWN S F. Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs[J]. Energy Reports, 2020, 6: 189-197. |
10 | 宋海申. LiFePO4/石墨动力电池高温循环失效研究[D]. 长沙: 中南大学, 2013. |
SONG H S. Capacity fading of LiFePO4/graphite batteries cycled at elevated temperature[D]. Changsha: Central South University, 2013. | |
11 | CARNOVALE A, LI X G. A modeling and experimental study of capacity fade for lithium-ion batteries[J]. Energy and AI, 2020, 2: doi: 10.1016/j.egyai.2020.100032. |
12 | KOBAYASHI Y, MIYASHIRO H, YAMAZAKI A, et al. Unexpected capacity fade and recovery mechanism of LiFePO4/graphite cells for grid operation[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227502. |
13 | GUO Z J, CHEN Z L. High-temperature capacity fading mechanism for LiFePO4/graphite soft-packed cell without Fe dissolution[J]. Journal of Electroanalytical Chemistry, 2015, 754: 148-153. |
14 | 王健雁, 廖成龙, 凌泽. 锂离子电池的循环寿命影响因素研究进展[J]. 化工新型材料, 2019, 47(S1): 33-35. |
WANG J Y, LIAO C L, LING Z. Research progress on the factors affecting the cyclic life of lithium ion battery[J]. New Chemical Materials, 2019, 47(S1): 33-35. | |
15 | 侯卫国, 郑昆, 蔡国辉, 等. 电动自行车用锂电池-20 ℃循环寿命研究[J]. 电池工业, 2019, 23(5): 227-230. |
HOU W G, ZHENG K, CAI G H, et al. Studying on discharge life of lithium ion battery for electric bicycle at low temperature -20 ℃[J]. Chinese Battery Industry, 2019, 23(5): 227-230. | |
16 | CHEN K, CHEN Y M, LI Z Y, et al. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 393-401. |
17 | JIANG Z Y, QU Z G. lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
18 | SAW L H, YE Y H, TAY A A O, et al. Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling[J]. Applied Energy, 2016, 177: 783-792. |
19 | FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. |
20 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: doi: 10.1016/j.ijheatmasstransfer.2020.120307. |
21 | CHEN K, WANG S F, SONG M X, et al. Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy[J]. Applied Thermal Engineering, 2017, 123: 177-186. |
22 | YANG N X, ZHANG X W, LI G J, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied Thermal Engineering, 2015, 80: 55-65. |
23 | JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. |
24 | QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631. |
25 | PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2017, 122: 80-90. |
26 | LI K, YAN J J, CHEN H D, et al. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system[J]. Applied Thermal Engineering, 2018, 132: 575-585. |
27 | RAO Z H, QIAN Z, KUANG Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522. |
28 | XU Y R, LI X X, LIU X Y, et al. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management[J]. Applied Thermal Engineering, 2021, 184: doi: 10.1016/j.applthermaleng.2020.116217. |
29 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
30 | XIE Y Q, TANG J C, SHI S, et al. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials[J]. Energy Conversion and Management, 2017, 154: 562-575. |
31 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403. |
32 | ZOU D Q, LIU X S, HE R J, et al. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module[J]. Energy Conversion and Management, 2019, 180: 1196-1202. |
33 | CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120434. |
34 | LEI S R, SHI Y, CHEN G Y. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J]. Applied Thermal Engineering, 2020, 168: doi: 10.1016/j.applthermaleng.2019.114792. |
35 | JANG J C, RHI S H. Battery thermal management system of future electric vehicles with loop thermosiphon[C]//US-Korea Conference on Science, Technology and Entrepreneurship (UKC), 2010. |
36 | RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97. |
37 | WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60. |
38 | 丹聃, 连红奎, 张扬军, 等. 基于平板热管技术的电池热管理系统实验研究[J]. 中国科学: 技术科学, 2019, 49(9): 1023-1030. |
DAN D, LIAN H K, ZHANG Y J, et al. Experimental research on battery thermal management system based on vapor chamber technology[J]. Scientia Sinica (Technologica), 2019, 49(9): 1023-1030. | |
39 | RAO Z H, HUO Y T, LIU X J. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26. |
40 | 金远, 韩甜, 韩鑫, 等. 锂离子电池热管理综述[J]. 储能科学与技术, 2019, 8(S1): 23-30. |
JIN Y, HAN T, HAN X, et al. A review on thermal management techniques for lithium-ion battery[J]. Energy Storage Science and Technology, 2019, 8(S1): 23-30. | |
41 | YANG N X, ZHANG X W, LI G J, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied Thermal Engineering, 2015, 80: 55-65. |
42 | CHEN D F, JIANG J C, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846-854. |
43 | 金钰. 车用锂离子动力电池系统强制风冷散热特性研究[D]. 长沙: 湖南大学, 2018. |
JIN Y. Investigation on thermal performance of the forced-air cooling of the lithium ion power battery system for vehicle[D]. Changsha: Hunan University, 2018. | |
44 | 汪缤缤, 李素平, 胡绪照. 不同入口方案对圆柱锂离子电池空冷散热的影响[J]. 邵阳学院学报(自然科学版), 2020, 17(4): 55-62. |
WANG B B, LI S P, HU X Z. Effects of different inlet schemes on air cooling of cylindrical lithium-ion batteries[J]. Journal of Shaoyang University (Natural Science Edition), 2020, 17(4): 55-62. | |
45 | 宋亚豪. 某款车用锂电池生热特性与电池包仿生散热优化研究[D]. 株洲: 湖南工业大学, 2019. |
SONG Y H. Analysis of thermogenic characteristics of lithium battery and bionic heat dissipation of battery pack in certain vehicle[D]. Zhuzhou: Hunan University of Technology, 2019. | |
46 | PARK H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36. |
47 | MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439. |
48 | MOHAMMADIAN S K, ZHANG Y W. Temperature uniformity improvement of an air-cooled high-power lithium-ion battery using metal and nonmetal foams[J]. Journal of Heat Transfer, 2016, 138(11): doi:10.1115/1.4033811. |
49 | LEMMON E W, JACOBSEN R T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air[J]. International Journal of Thermophysics, 2004, 25(1): 21-69. |
50 | 王芳, 夏军. 电动汽车动力电池系统安全分析与设计[M]. 北京: 科学出版社, 2016: 206-208. |
51 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
52 | LI W Q , QU Z G, HE Y L, el al. Experimental study of a passive thermal management[J]. Renewable&Sustainable Energy Reviews, 2011,15(9): 4554-4571. |
53 | 齐晓霞, 王文, 邵力清. 混合动力电动车用电源热管理的技术现状[J]. 电源技术, 2005, 29(3): 178-181. |
QI X X, WANG W, SHAO L Q. Battery cooling issues and solutions in HEVs[J]. Chinese Journal of Power Sources, 2005, 29(3): 178-181. | |
54 | PATEL J R, RATHOD M K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries[J]. Journal of Power Sources, 2020, 480: doi: 10.1016/j.jpowsour.2020.228820. |
55 | 冯能莲, 董士康, 李德壮, 等. 蜂巢式液冷电池模块传热特性的试验研究[J]. 汽车工程, 2020, 42(5): 658-664. |
FENG N L, DONG S K, LI D Z, et al. Experiment study on heat transfer characteristics of honeycomb liquid cooled battery module[J]. Automotive Engineering, 2020, 42(5): 658-664. | |
56 | 聂磊, 王敏弛, 赵耀, 等. 纯电动汽车冷媒直冷电池热管理系统的实验研究[J]. 制冷学报, 2020, 41(4): 52-58. |
NIE L, WANG M C, ZHAO Y, et al. Experimental study on direct refrigerant battery cooling system for electric vehicle[J]. Journal of Refrigeration, 2020, 41(4): 52-58. | |
57 | 万长东, 任慧中, 鲁春艳, 等. 锂离子动力电池包液冷散热分析与优化[J]. 机床与液压, 2021, 49(4): 160-163. |
WAN C D, REN H Z, LU C Y, et al. Analysis and optimization of liquid cooling heat dissipation for lithium-ion power battery pack[J]. Machine Tool & Hydraulics, 2021, 49(4): 160-163. | |
58 | LAN C J, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101: 284-292. |
59 | HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. |
60 | YANG X H, TAN S C, LIU J. Thermal management of Li-ion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117: 577-585. |
61 | ZHAO R, ZHANG S J, GU J J, et al. An experimental study of lithium ion battery thermal management using flexible hydrogel films[J]. Journal of Power Sources, 2014, 255: 29-36. |
62 | 邓元望, 张上安, 钟俊夫, 等. 混合动力车用锂电池液体冷却散热器结构设计[J]. 电源技术, 2015, 39(3): 454-457. |
DENG Y W, ZHANG S A, ZHONG J F, et al. Design of radiator for HEV lithium battery pack using liquid cooling[J]. Chinese Journal of Power Sources, 2015, 39(3): 454-457. | |
63 | 施曙东. 膨胀石墨微观结构调控及其与石蜡复合相变储能材料研究[J]. 功能材料, 2018, 49(1): 1064-1070. |
SHI S D. Microstructure adjustment of expanded graphite and its influence on thermal performance of composite paraffin/expanded graphite phase-change material[J]. Journal of Functional Materials, 2018, 49(1): 1064-1070. | |
64 | HÉMERY C V, PRA F, ROBIN J F, et al. Experimental performances of a battery thermal management system using a phase change material[J]. Journal of Power Sources, 2014, 270: 349-358. |
65 | ALRASHDAN A, MAYYAS A T, AL-HALLAJ S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs[J]. Journal of Materials Processing Technology, 2010, 210(1): 174-179. |
66 | 许卓新. 相变储能材料的分类及应用探究[J]. 中国设备工程, 2019(2): 116-117. |
XU Z X. Classification and application of phase change energy storage materials[J]. China Plant Engineering, 2019(2): 116-117. | |
67 | 白艳萍, 张玉忠. 相变材料的分类及其应用研究[J]. 科技风, 2015(8): 72. |
BAI Y P, ZHANG Y Z. Research on classification and application of phase change materials[J]. Technology Wind, 2015(8): 72. | |
68 | SAMIMI F, BABAPOOR A, AZIZI M, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96: 355-371. |
69 | LI Y T, DU Y X, XU T, et al. Optimization of thermal management system for Li-ion batteries using phase change material[J]. Applied Thermal Engineering, 2018, 131: 766-778. |
70 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. |
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. | |
71 | SUN Z Q, FAN R J, YAN F, et al. Thermal management of the lithium-ion battery by the composite PCM-Fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145: doi: 10.1016/j.ijheatmasstransfer.2019.118739. |
72 | LUO X H, GUO Q G, LI X F, et al. Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries[J]. Renewable Energy, 2020, 145: 2046-2055. |
73 | KARIMI G, AZIZI M, BABAPOOR A. Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites[J]. Journal of Energy Storage, 2016, 8: 168-174. |
74 | LI W Q, QU Z G, HE Y L, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255: 9-15. |
75 | NOIE S H. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2005, 25(4): 495-506. |
76 | SINGH R, AKBARZADEH A, MOCHIZUKI M. Operational characteristics of a miniature loop heat pipe with flat evaporator[J]. International Journal of Thermal Sciences, 2008, 47(11): 1504-1515. |
77 | GRECO A, CAO D P, JIANG X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources, 2014, 257: 344-355. |
78 | LIU F F, LAN F C, CHEN J Q. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources, 2016, 321: 57-70. |
79 | BEHI H, BEHI M, KARIMI D, et al. Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications[J]. Applied Thermal Engineering, 2021, 183: doi: 10.1016/j.applthermaleng.2020.116240. |
80 | 田晟, 肖佳将. 基于正交层次法的锂离子电池热管散热模组数值模拟分析[J]. 化工学报, 2020, 71(8): 3510-3517. |
TIAN S, XIAO J J. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process[J]. CIESC Journal, 2020, 71(8): 3510-3517. | |
81 | 周智程, 魏爱博, 屈健, 等. 管板结构脉动热管冷却动力电池的传热特性[J]. 化工进展, 2020, 39(10): 3916-3925. |
ZHOU Z C, WEI A B, QU J, et al. Heat transfer characteristics of oscillating heat pipe and its application in power battery cooling[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3916-3925. | |
82 | KHANDEKAR S, DOLLINGER N, GROLL M. Understanding operational regimes of closed loop pulsating heat pipes: An experimental study[J]. Applied Thermal Engineering, 2003, 23(6): 707-719. |
83 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 331-332. |
YANG S M, TAO W Q. Heat transfer[M]. 4th edition, Beijing: Higher Education Press, 2006: 331-332. | |
84 | 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却效果实验[J]. 化工进展, 2009, 28(7): 1165-1168, 1174. |
ZHANG G Q, WU Z J, RAO Z H, et al. Experimental invesitigation on heat pipe cooling effect for power battery[J]. Chemical Industry and Engineering Progress, 2009, 28(7): 1165-1168, 1174. | |
85 | BAI F F, CHEN M B, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126: 17-27. |
86 | ZHAO J T, RAO Z H, LIU C Z, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat and Mass Transfer, 2016, 99: 252-260. |
87 | 赵佳腾. 相变储能材料/脉动热管耦合传热性能研究[D]. 徐州: 中国矿业大学, 2016. |
ZHAO J T. Investigation on the thermal performance of phase change energy storage material coupled with oscillation heat pipe[D]. Xuzhou: China University of Mining and Technology, 2016. | |
88 | 罗孝学, 章学来, 华维三, 等. 一种脉动热管相变蓄放热试验装置的设计[J]. 流体机械, 2017, 45(4): 63-67. |
LUO X X, ZHANG X L, HUA W S, et al. Design of pulsating heat pipe type phase change thermal storage experimental device[J]. Fluid Machinery, 2017, 45(4): 63-67. | |
89 | 罗孝学, 章学来, 华维三, 等. 脉动热管相变蓄热器蓄热实验分析[J]. 化工学报, 2017, 68(7): 2722-2729. |
LUO X X, ZHANG X L, HUA W S, et al. Experimental analysis on heat storage of pulsating heat pipe phase change heat accumulator[J]. CIESC Journal, 2017, 68(7): 2722-2729. | |
90 | 罗孝学, 章学来, 邹长贞, 等. 脉动热管相变蓄热器放热性能实验分析[J]. 热力发电, 2018, 47(4): 123-130. |
LUO X X, ZHANG X L, ZOU C Z, et al. Experimental analysis on heat release performance of pulsating heat pipe phase change heat accumulator[J]. Thermal Power Generation, 2018, 47(4): 123-130. | |
91 | 罗孝学, 章学来, 华维三, 等. 应用于相变蓄热的脉动热管换热器在不同倾角下放热性能的试验研究[J]. 流体机械, 2017, 45(7): 62-67. |
LUO X X, ZHANG X L, HUA W S, et al. Experimental study on heat transfer performance of pulsating heat pipe heat exchanger with phase change heat storage at different inclination[J]. Fluid Machinery, 2017, 45(7): 62-67. | |
92 | WANG Y W, PENG P, CAO W J, et al. Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2020, 180: doi: 10.1016/j.applthermaleng.2020.115772. |
93 | CHEN Y T, KANG S W, HUNG Y H, et al. Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures[J]. Applied Thermal Engineering, 2013, 51(1/2): 864-870. |
94 | AMELI M, AGNEW B, LEUNG P S, et al. A novel method for manufacturing sintered aluminium heat pipes (SAHP)[J]. Applied Thermal Engineering, 2013, 52(2): 498-504. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[4] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[5] | 柯巧敏, 郭剑, 王亦伟, 曹文炅, 陈满, 蒋方明. 液冷式热管理对动力电池热失控阻隔性能[J]. 储能科学与技术, 2022, 11(5): 1634-1640. |
[6] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[7] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[8] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
[9] | 朱信龙, 王均毅, 潘加爽, 康传智, 邹燚涛, 杨凯杰, 施红. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118. |
[10] | 吴晓刚, 崔智昊, 孙一钊, 张锟, 杜玖玉. 电动汽车大功率充电过程动力电池充电策略与热管理技术综述[J]. 储能科学与技术, 2021, 10(6): 2218-2234. |
[11] | 许国良, 张玉洁, 黄晓明, 何锐. 基于临界换热系数与干预时间的车用锂电池热设计及运行策略[J]. 储能科学与技术, 2021, 10(6): 2252-2259. |
[12] | 黄菊花, 陈强, 曹铭, 张亚舫, 刘自强, 胡金. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431. |
[13] | 胡银全, 刘和平. 基于遗传算法的电池包高效热管理流道优化[J]. 储能科学与技术, 2021, 10(4): 1446-1453. |
[14] | 李向东, 廉睿, 吴佳美, 唐良辉, 乔志军, 阮殿波. 基于Fluent的超级电容器模组充放电循环的热仿真分析[J]. 储能科学与技术, 2021, 10(2): 732-737. |
[15] | 张志鸿, 牟俊彦, 孟玉发. 风冷圆柱形锂离子电池系统热失控扩展特性[J]. 储能科学与技术, 2021, 10(2): 658-663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||