1 |
ABAS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69: 31-49.
|
2 |
HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change—A review[J]. Energy Policy, 2013, 52: 797-809.
|
3 |
SOVACOOL B K. Valuing the greenhouse gas emissions from nuclear power: A critical survey[J]. Energy Policy, 2008, 36(8): 2950-2963.
|
4 |
GONG H M, WANG M Q, WANG H W. New energy vehicles in China: Policies, demonstration, and progress[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(2): 207-228.
|
5 |
刘全兵. 锂离子电池正极材料的制备及其性能研究[D]. 广州: 华南理工大学, 2012.
|
|
LIU Q B. Preparation of cathode materials for lithium-ion battery and its performance[D]. Guangzhou: South China University of Technology, 2012.
|
6 |
SUN J, LI J G, ZHOU T, et al. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313-319.
|
7 |
CHUNG Y H, JHANG W C, CHEN W C, et al. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(1): 809-817.
|
8 |
GERMAN R, DELARUE P, BOUSCAYROL A. Battery pack self-heating during the charging process[C]//2018 IEEE International Conference on Industrial Technology (ICIT). 2018, Lyon, France. IEEE, 2018: 2049-2054.
|
9 |
浦文婧, 芦伟, 谢凯, 等. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
|
|
PU W J, LU W, XIE K, et al. Progress on the carbonate-based electrolyte designed for lithium-ion batteries with wide operating temperature range[J]. Materials Reports, 2020, 34(7): 7036-7044.
|
10 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382.
|
11 |
THOMAS E V, CASE H L, DOUGHTY D H, et al. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources, 2003, 124(1): 254-260.
|
12 |
王慧磊. 电动汽车锂动力电池组热管理系统研究与应用[D]. 哈尔滨: 黑龙江大学, 2014.
|
13 |
ZHANG J Y, ZHANG G Q, ZHANG L, et al. Simulation and experiment on air-cooled thermal energy management of lithium-ion power batteries[J]. Journal of Automotive Safety and Energy, 2011, 2(2): 181-184.
|
14 |
MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439.
|
15 |
陈通, 孙国华, 王明强, 等. 基于液体的动力电池热管理系统性能研究[J]. 电源技术, 2019, 43(4): 658-661.
|
|
CHEN T, SUN G H, WANG M Q, et al. Research on thermal management performance of electric vehicle power battery based on liquid[J]. Chinese Journal of Power Sources, 2019, 43(4): 658-661.
|
16 |
YUAN H, WANG L F, WANG L Y. Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Journal of Automotive Safety and Energy, 2012, 3(4): 371-380.
|
17 |
ZHAO J T, RAO Z H, LI Y M. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103: 157-165.
|
18 |
张江云. 基于相变散热的动力电池热管理技术研究[D]. 广州: 广东工业大学, 2013.
|
|
ZHANG J Y. Research on power batteries thermal management technology based on PCM[D]. Guangzhou: Guangdong University of Technology, 2013.
|
19 |
李泽群, 杨建国. 石墨/石蜡相变材料在电池热管理中的应用[J]. 电源技术, 2020, 44(9): 1287-1292.
|
|
LI Z Q, YANG J G. Application of graphite/paraffin phase change materials in battery thermal management[J]. Chinese Journal of Power Sources, 2020, 44(9): 1287-1292.
|
20 |
马先锋, 邹得球, 刘小诗, 等. 动力电池热管理用相变材料的研究进展[J]. 化工新型材料, 2017, 45(9): 23-25.
|
|
MA X F, ZOU D Q, LIU X S, et al. Research progress on phase change material for power battery thermal management[J]. New Chemical Materials, 2017, 45(9): 23-25.
|
21 |
王鹏. 二种低温固液相变储能材料的制备及其性能研究[D]. 北京: 北京石油化工学院, 2015.
|
|
WANG P. Application of the inorganic phase change material sodium sulfate decahydrate and the organic phase change material paraffin[D]. Beijing: Beijing Institute of Petrochemical Technology, 2015.
|
22 |
魏增辉, 许思传, 李钊, 等. 基于相变材料和液冷的LiFePO4电池包热管理研究[J]. 电源技术, 2016, 40(1): 44-46, 69.
|
|
WEI Z H, XU S C, LI Z, et al. Research on active-passive thermal management system of LiFePO4 battery pack[J]. Chinese Journal of Power Sources, 2016, 40(1): 44-46, 69.
|
23 |
黄菊花, 刘自强, 曹铭, 等. 相变材料与液冷耦合的电池组热管理研究[J]. 电源技术, 2019, 43(8): 1322-1324, 1343.
|
|
HUANG J H, LIU Z Q, CAO M, et al. Thermal management of battery pack based on phase change material and liquid cooling coupling[J]. Chinese Journal of Power Sources, 2019, 43(8): 1322-1324, 1343.
|
24 |
LIU Z Q, HUANG J H, CAO M, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021, 185: doi: 10.1016/j.applthermaleng.2020.116415.
|
25 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|