储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1432-1438.doi: 10.19799/j.cnki.2095-4239.2021.0109

• 储能测试与评价 • 上一篇    下一篇

结合高斯过程回归与特征选择的锂离子电池容量估计方法

韩云飞(), 谢佳, 蔡涛(), 程时杰   

  1. 华中科技大学电气与电子工程学院,强电磁工程与新技术国家重点实验室,湖北 武汉 430074
  • 收稿日期:2021-03-16 修回日期:2021-03-18 出版日期:2021-07-05 发布日期:2021-06-25
  • 通讯作者: 蔡涛 E-mail:M201871373@hust.edu.cn;caitao@hust.edu.cn
  • 作者简介:韩云飞(1995—),男,硕士研究生,研究方向为电池管理、机器学习在储能系统中的应用,E-mail:M201871373@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(U196620053)

Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection

Yunfei HAN(), Jia XIE, Tao CAI(), Shijie CHENG   

  1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2021-03-16 Revised:2021-03-18 Online:2021-07-05 Published:2021-06-25
  • Contact: Tao CAI E-mail:M201871373@hust.edu.cn;caitao@hust.edu.cn

摘要:

由于锂离子电池本身复杂的老化特性,准确预测电池的健康状态和剩余寿命是一个尚未解决的挑战,这限制了消费电子、电动汽车和电网储能等技术的发展。电池的老化机制复杂且相互耦合,难以采用基于模型的方法进行准确的建模。本工作提出了一种基于数据驱动的锂离子电池容量估计方法,通过分析电池的电压-放电容量曲线随循环老化的演变模式,提取具有电化学意义的特征,采用高斯过程回归(Gaussian process regression,GPR)对电池的容量进行预测。该模型的输入特征可以在线获取,不需要对电池进行完整的充放电循环即可估计容量。在钴酸锂电池和磷酸铁锂电池数据集上分别进行了实验验证,结果表明该方法具有较好的泛化能力,对不同类型的电池均能实现准确的容量估计。将本文的方法与阻抗谱作为输入的GPR模型进行对比试验,结果表明该特征能获得更好的估计精度。这一结果说明了合适的特征选择能显著影响锂离子电池的数据驱动模型性能,为电池的状态预测与诊断提供了参考。

关键词: 锂离子电池, 容量估计, 高斯过程回归, 特征选择

Abstract:

Because of the complex degradation characteristics of Li-ion batteries, it is a continuing challenge to accurately predict the state of health and remaining useful life of batteries, which limits the development of consumer electronics, electric vehicles, and grid energy storage technologies. The degradation mechanism of the batteries is complex and coupled with each other. Therefore, it is difficult to use a model-based method for accurate modeling. This study proposes a data-driven capacity estimation method for Li-ion batteries. By analyzing the evolution pattern of the voltage-discharge capacity curve with cycle aging, features with an electrochemical concept are selected as the model input, and the capacity of Li-ion batteries can be predicted by the Gaussian process regression (GPR) model. The input features of the model can be obtained online, and the capacity of the battery can be estimated without a full charge-discharge. The experimental verification was completed with the data sets for LCO/graphite batteries and LFP/graphite batteries. The results show that the method has a good generalization ability and can accurately estimate the capacity of different types of batteries. The proposed method is compared to the GPR model with electrochemical impedance spectroscopy as the input, and the results indicate that the proposed method can obtain better estimation accuracy. This highlights that the appropriate selection of various features can significantly affect the performance of the data-driven model for Li-ion batteries and can provide a reference for battery state prediction and diagnosis.

Key words: lithium-ion battery, capacity estimation, Gaussian process regression, feature selection

中图分类号: