1 |
MENG J H, STROE D, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727.
|
2 |
NG M F, ZHAO J, YAN Q Y, et al. Predicting the state of charge and health of batteries using data-driven machine learning[J]. Nature Machine Intelligence, 2020, 2: 161-170.
|
3 |
HUANG W, ATTIA P M, WANG H S, et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy[J]. Nano Letters, 2019, 19(8): 5140-5148.
|
4 |
DIAO W P, SAXENA S, PECHT M. Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019. 226830.
|
5 |
PALACIN M R, DE GUIBERT A. Why do batteries fail?[J]. Science, 2016, 351: 1253292.
|
6 |
HARRIS S J, LU P. Effects of inhomogeneities-nanoscale to mesoscale on the durability of Li-ion batteries[J]. The Journal of Physical Chemistry, 2013, 117: 6481-6492.
|
7 |
ATALAY S, SHEIKH M, MARIANI A, et al. Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction[J]. Journal of Power Sources, 2020, 478:doi: 10.1016/j.jpowsour.2020. 229026.
|
8 |
朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176.ZHU Y F, HE W W, LI J X, et al. SOC Estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176.
|
9 |
易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573.YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573.
|
10 |
LI X Y, WAN Z P, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114.
|
11 |
ZHANG Y W, TANG Q C, ZHANG Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications, 2020, 11: 1706.
|
12 |
李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-691.LI C R, XIAO F, FAN Y X, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(2): 681-691.
|
13 |
ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578: 397-402.
|
14 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391.
|
15 |
SEVERSON K. Machine learning for applications in chemical and biological engineering[D]. Cambridge: Massachusetts Institute of Technology, 2018.
|
16 |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: The MIT Press, 2006.
|