储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1777-1787.doi: 10.19799/j.cnki.2095-4239.2021.0312
收稿日期:
2021-07-05
修回日期:
2021-07-19
出版日期:
2021-09-05
发布日期:
2021-09-08
作者简介:
袁志懿(1995—),男,博士研究生,主要研究方向为流体机械理论及应用,E-mail:基金资助:
Zhiyi YUAN1(), Yongxue ZHANG1,2(), Ziwei QI1
Received:
2021-07-05
Revised:
2021-07-19
Online:
2021-09-05
Published:
2021-09-08
摘要:
隔舌结构参数对泵和透平的性能有着显著影响。为了研究隔舌安放角变化对泵作透平正反模式下水力性能的影响规律,本文对4种隔舌安放角的低比转速离心泵正反模式运行的内流场进行了数值模拟,并通过实验验证了模拟结果的可靠性。结合熵产诊断以及损失功率计算,分析了不同泵模型在正反模式下扬程(泵模式)、必需水头(透平模式)、效率以及内流损失的变化情况。结果表明,适当增加安放角可以使泵扬程增加,透平必需水头减小,两种模式的效率提高,效率-流量曲线右移,最佳效率点对应的流量值增大。但角度增加超出一定范围后,泵效率降低。两种模式的水力损失都集中在蜗壳区域,与转轮内水力损失相比,其受隔舌安放角角度变化影响更为显著。当隔舌安放角角度增加时,泵效率增大的主要原因在于蜗壳出口区域水力损失的减小。对于透平模式,尽管转轮内分离涡结构在较大隔舌安放角情况下受到抑制,但其变化对效率影响较小,透平效率提升的主要原因是隔舌与转轮间隙以及蜗壳壁面附近的水力损失降低。
中图分类号:
袁志懿, 张永学, 祁紫伟. 隔舌安放角对泵作透平正反模式下水力性能的影响[J]. 储能科学与技术, 2021, 10(5): 1777-1787.
Zhiyi YUAN, Yongxue ZHANG, Ziwei QI. Hydraulic characteristic of pump as turbine with different volute tongue angle in direct and reverse modes[J]. Energy Storage Science and Technology, 2021, 10(5): 1777-1787.
1 | 周学志, 徐玉杰, 谭雅倩, 等. 小型抽水蓄能技术发展现状及应用前景[J]. 中外能源, 2017, 22(8): 87-93. |
ZHOU X Z, XU Y J, TAN Y Q, et al. Development status and application prospects of small-scale pumped hydro energy storage technology[J]. Sino-Global Energy, 2017, 22(8): 87-93. | |
2 | ELBATRAN A H, YAAKOB O B, AHMED Y M, et al. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 40-50. |
3 | BINAMA M, SU W T, LI X B, et al. Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 148-179. |
4 | KUSAKANA K. Hybrid DG-PV with groundwater pumped hydro storage for sustainable energy supply in arid areas[J]. Journal of Energy Storage, 2018, 18: 84-89. |
5 | KUSAKANA K. Optimal electricity cost minimization of a grid-interactive pumped hydro storage using ground water in a dynamic electricity pricing environment[J]. Energy Reports, 2019, 5: 159-169. |
6 | MORABITO A, STEIMES J, HENDRICK P. Pumped hydroelectric energy storage: A comparison of turbomachinery configurations[J]. Sustainable Hydraulics in the Era of Global Change, 2016: 261-268. |
7 | SINGH P, NESTMANN F. An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 152-164. |
8 | ŠTEFAN D, ROSSI M, HUDEC M, et al. Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis[J]. Renewable Energy, 2020, 156: 158-172. |
9 | GHORANI M M, HAGHIGHI M H S, MALEKI A, et al. A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory[J]. Renewable Energy, 2020, 162: 1036-1053. |
10 | DAI C, DONG L, LIN H B, et al. A hydraulic performance comparison of centrifugal pump operating in pump and turbine modes[J]. Journal of Thermal Science, 2020, 29(6): 1594-1605. |
11 | SINGH P, NESTMANN F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 121-134. |
12 | 杨孙圣, 孔繁余, 陈浩, 等. 叶片进口安放角对液力透平性能的影响[J]. 中南大学学报(自然科学版), 2013, 44(1): 108-113. |
YANG S S, KONG F Y, CHEN H, et al. Effects of blade inlet angle on performance of pump as turbine[J]. Journal of Central South University, 2013, 44(1): 108-113. | |
13 | 杨孙圣, 孔繁余, 薛玲, 等. 长短叶片对液力透平性能的影响[J]. 农业机械学报, 2012, 43(7): 104-107. |
YANG S S, KONG F Y, XUE L, et al. Effect of splitter blade on the performance of pump as turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7): 104-107. | |
14 | 严健儒, 左志涛, 侯虎灿, 等. 小型混流式水泵水轮机损失分析与正交优化设计[J]. 储能科学与技术, 2018, 7(5): 913-920. |
YAN J R, ZUO Z T, HOU H C, et al. Loss analysis and design optimization of a small scale mixed-flow pump turbine using the orthogonal method[J]. Energy Storage Science and Technology, 2018, 7(5): 913-920. | |
15 | 吕剑渊, 许文倩, 张玉良, 等. 蜗壳隔舌安放角对离心泵特性及流动稳定性的影响[J]. 浙江理工大学学报(自然科学版), 2021,45(3): 351-364. |
LYU J Y, XU W Q, ZHANG Y L, et al. The influence of volute angle on the characteristic and flow stability of centrifugal pump[J]. Journal of Zhejiang Sci-Tech University, 2021, 45(3): 351-364. | |
16 | 史广泰, 杨军虎, 苗森春. 蜗壳出口截面对液力透平性能的影响[J]. 兰州理工大学学报, 2015, 41(1): 55-59. |
SHI G T, YANG J H, MIAO S C. Effect of outlet section of volute on performance of hydraulic turbine[J]. Journal of Lanzhou University of Technology, 2015, 41(1): 55-59. | |
17 | 苗森春, 杨军虎, 史广泰. 蜗壳截面形状对液力透平性能的影响[J]. 兰州理工大学学报, 2015, 41(5): 50-53. |
MIAO S C, YANG J H, SHI G T. Effect of cross-section shape of volute on performance of hydraulic turbine[J]. Journal of Lanzhou University of Technology, 2015, 41(5): 50-53. | |
18 | 史广泰, 杨军虎. 液力透平进口截面对水力损失及速度矩的影响[J]. 西华大学学报(自然科学版), 2015, 34(1): 55-60. |
SHI G T, YANG J H. Effect of entrance section of hydraulic turbine on hydraulic loss and velocity torque[J]. Journal of Xihua University (Natural Science Edition), 2015, 34(1): 55-60. | |
19 | 史广泰, 杨军虎, 苗森春, 等. 不同进口截面下液力透平非定常压力脉动计算[J]. 航空动力学报, 2016, 31(3): 659-668. |
SHI G T, YANG J H, MIAO S C, et al. Unsteady calculation of pressure pulsations within hydraulic turbine under different entrance sections[J]. Journal of Aerospace Power, 2016, 31(3): 659-668. | |
20 | ARANI H A, FATHI M, RAISEE M, et al. The effect of tongue geometry on pump performance in reverse mode: an experimental study[J]. Renewable Energy, 2019, 141: 717-727. |
21 | MORABITO A, VAGNONI E, MATTEO M, et al. Numerical investigation on the volute cutwater for pumps running in turbine mode[J]. Renewable Energy, 2021, 175: 807-824. |
22 | 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011. |
GUAN X F. Modern pumps theory and design[M]. Beijing: China Aerospace Publishing House, 2011. | |
23 | KOCK F, HERWIG H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2205-2215. |
24 | HOU H C, ZHANG Y X, LI Z L, et al. Numerical analysis of entropy production on a LNG cryogenic submerged pump[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 87-96. |
25 | WANG C, ZHANG Y X, HOU H C, et al. Entropy production diagnostic analysis of energy consumption for cavitation flow in a two-stage LNG cryogenic submerged pump[J]. International Journal of Heat and Mass Transfer, 2019, 129: 342-356. |
26 | YUAN Z Y, ZHANG Y X, WANG C, et al. Study on characteristics of vortex structures and irreversible losses in the centrifugal pump[J]. Journal of Power and Energy, 2021, 235(5): 1080-1093. |
27 | HAGHIGHI M H S, MIRGHAVAMI S M, GHORANI M M, et al. A numerical study on the performance of a superhydrophobic coated very low head (VLH) axial hydraulic turbine using entropy generation method[J]. Renewable Energy, 2020, 147: 409-422. |
28 | CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering-Transactions of the ASME, 2008, 130(7): doi:10.1115/1.2960953. |
29 | WANG C, ZHANG Y X, ZHU J J, et al. Effect of cavitation and free-gas entrainment on the hydraulic performance of a centrifugal pump[J]. Journal of Power and Energy, 2021, 235(3): 440-453. |
30 | YUAN Z Y, ZHANG Y X, ZHANG J Y, et al. Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode[J]. Renewable Energy, 2021, 177: 1265-1281. |
31 | ZHANG N, LIU X K, GAO B, et al. DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump[J]. Renewable Energy, 2019, 141: 570-582. |
32 | FU Y X, YUAN J P, YUAN S Q, et al. Numerical and experimental analysis of flow phenomena in a centrifugal pump operating under low flow rates[J]. Journal of Fluids Engineering, 2015, 137(1): doi:10.1115/1.4027142. |
33 | RENZI M, RUDOLF P, ŠTEFAN D, et al. Installation of an axial pump-as-turbine (PaT) in a wastewater sewer of an oil refinery: A case study[J]. Applied Energy, 2019, 250: 665-676. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[3] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[4] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[5] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[6] | 刘立君, 宁雅倩, 李晓庆, 刘晓燕. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, (): 1-9. |
[7] | 张弘, 张阳, 赵耀, 王久林. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933. |
[8] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[9] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[10] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[11] | 吴小凌, 周涛, 刘钰照, 杜艳平, 陈会平, 李顺. 基于空气紊流的中空底孔微柱阵列设计及强化散热数值研究[J]. 储能科学与技术, 2022, 11(6): 1980-1987. |
[12] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[13] | 王灿, 马盼, 祝国梁, 魏水淼, 杨植禄, 张志宇. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. |
[14] | 郝佳豪, 越云凯, 张家俊, 杨俊玲, 李晓琼, 宋衍昌, 张振涛. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, (): 1-10. |
[15] | 杨娜, 王成成, 杨慧, 胡志昊, 童莉葛, 李仲博, 王立, 丁玉龙, 李娜. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||