储能科学与技术 ›› 2013, Vol. 2 ›› Issue (4): 349-361.doi: 10.3969/j.issn.2095-4239.2013.04.003
林明翔, 唐代春, 董金平, 孙洋, 徐凯琪, 闫勇, 陈彬, 王昊, 贲留斌, 黄学杰
收稿日期:
2013-06-15
出版日期:
2013-08-19
发布日期:
2013-08-19
通讯作者:
黄学杰,研究员,E-mail:xjhuang@jphy.ac.cn.
作者简介:
林明翔(1989--),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:linmingxiang@yahoo.com.cn
LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-06-15
Online:
2013-08-19
Published:
2013-08-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年4月1日至2013年5月31日上线的锂电池研究论文,共有855篇,选择其中100篇加以评论.层状氧化物正极材料的热稳定性,循环过程中的结构相变以及产气问题受到人们关注,高电压的尖晶石结构LiNi0.5M1.5O4在高压下与电解液的匹配以及添加剂的使用也受到人们较多的关注.高容量的Si基负极材料一直是研究的热点,本期碳材料负极也出现了几篇有深度的研究论文.固态聚合物电解质和无机电解质,液态电解质的成膜添加剂均有研究.具有高能量密度的新体系,锂硫电池的研究论文多于锂空气电池的.除了这些以材料为主的研究之外,针对电池安全和电池应用的研究论文也在逐渐增多,这对电池技术的创新将产生促进作用.
中图分类号:
林明翔, 唐代春, 董金平, 孙洋, 徐凯琪, 闫勇, 陈彬, 王昊, 贲留斌, 黄学杰. 锂电池百篇论文点评(2013.4.1--2013.5.31)[J]. 储能科学与技术, 2013, 2(4): 349-361.
LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 1,2013 to May 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(4): 349-361.
[1] Liu Q,Du K,Guo H W, et al . Structural and electrochemical properties of Co-Mn-Mg multi-doped nickel based cathode materials LiNi 0.9 Co 0.1- x [Mn 1/2 Mg 1/2 ] x O 2 for secondary lithium ion batteries[J]. Electrochimica Acta ,2013,90:350-357. [2] Takami Y,Yanase S,Oi T. Observation of lithium isotope effects accompanying electrochemical release from lithium cobalt oxide[J] . Zeitschrift Fur Naturforschung Section A : A Journal of Physical Sciences ,2013,68(1-2):73-78. [3] Weng Y Q,Xu S M,Huang G Y, et al . Synthesis and performance of Li(Ni 1/3 Co 1/3 Mn 1/3 ) (1- x ) Mg x O 2 prepared from spent lithium ion batteries[J] . Journal of Hazardous Materials ,2013,246:163-172. [4] Krueger S,Kloepsch R,Li J, et al . How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(4):A542-A548. [5] Quinlan R A,Lu Y C,Shao H Y, et al . XPS studies of surface chemistry changes of LiNi 0.5 Mn 0.5 O 2 electrodes during high-voltage cycling[J] . Journal of the Electrochemical Society ,2013,160(4):A669-A677. [6] Cho Y H,Jang D,Yoon J, et al . Thermal stability of charged LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J] . Journal of Alloys and Compounds ,2013,562:219-223. [7] Kim Y. Encapsulation of LiNi 0.5 Co 0.2 Mn 0.3 O 2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries[J] . Physical Chemistry Chemical Physics ,2013, 15(17):6400-6405. [8] Lanz P,Sommer H,Schulz-Dobrick M, et al . Oxygen release from high-energy x Li 2 MnO 3 ·(1- x )LiMO 2 (M=Mn,Ni,Co):Electrochemical,differential electrochemical mass spectrometric,in situ pressure,and in situ temperature characterization[J] . Electrochimica Acta ,2013,93:114-119. [9] Sathiya M,Ramesha K,Rousse G, et al . High performance Li 2 Ru 1- y Mn y O 3 (0.2≤ y ≤0.8)cathode materials for rechargeable lithium-ion batteries:Their understanding[J] . Chemistry of Materials ,2013,25(7):1121-1131. [10] Bettge M,Li Y,Sankaran B, et al . Improving high-capacity Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 -based lithium-ion cells by modifiying the positive electrode with alumina[J] . Journal of Power Sources ,2013,233:346-357. [11] Croy J R,Gallagher K G,Balasubramanian M, et al . Examining hysteresis in composite x Li 2 MnO 3 ∙(1- x )LiMO 2 cathode structures[J] . Journal of Physical Chemistry C ,2013,117(13):6525-6536. [12] Martha S K,Nanda J,Kim Y, et al . Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode:Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 [J] . Journal of Materials Chemistry A ,2013,1(18):5587-5595. [13] McCalla E,Lowartz C M,Brown C R, et al . Formation of layered-layered composites in the Li-Co-Mn oxide pseudoternary system during slow cooling[J] . Chemistry of Materials ,2013,25(6):912-918. [14] McCalla E,Rowe A W,Shunmugasundaram R, et al . Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J] . Chemistry of Materials ,2013, 25(6):989-999. [15] Xiang X D,Fu Z,Li W S. Morphology-controllable synthesis of LiMn 2 O 4 particles as cathode materials of lithium batteries[J] . Journal of Solid State Electrochemistry ,2013,17(4):1201-1206. [16] Park J S,Roh K C,Lee J W, et al . Structurally stabilized LiNi 0.5 Mn 1.5 O 4 with enhanced electrochemical properties through nitric acid treatment[J] . Journal of Power Sources ,2013,230:138-142. [17] Qian Y X,Deng Y F,Shi Z C, et al . Sub-micrometer-sized LiMn 1.5 Ni 0.5 O 4 spheres as high rate cathode materials for long-life lithium ion batteries[J] . Electrochemistry Communications ,2013,27:92-95. [18] Baggetto L,Dudney N J,Veith G M. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS[J] . Electrochimica Acta ,2013,90:135-147. [19] Kim J H,Pieczonka N P W, Li Z C, et al . Understanding the capacity fading mechanism in LiNi 0.5 Mn 1.5 O 4 /graphite Li-ion batteries[J] . Electrochimica Acta ,2013,90:556-562. [20] Sharma N,Yu D H,Zhu Y S, et al . Non-equilibrium structural evolution of the lithium-rich Li 1+ y Mn 2 O 4 cathode within a battery[J] . Chemistry of Materials ,2013,25(5):754-760. [21] Proll J,Weidler P G,Kohler R, et al . Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries[J] . Thin Solid Films ,2013,531:160-171. [22] Harrison K L,Bridges C A,Paranthaman M P, et al . Temperature dependence of aliovalent-vanadium doping in LiFePO 4 cathodes[J] . Chemistry of Materials ,2013,25(5):768-781. [23] Chueh W C,Gabaly F E,Sugar J D, et al . Intercalation pathway in many-particle LiFePO 4 electrode revealed by nanoscale state-of-charge mapping[J] . Nano Letters ,2013,13(3):866-872. [24] Orikasa Y,Maeda T,Koyama Y, et al . Transient phase change in two phase reaction between LiFePO 4 and FePO 4 under battery operation[J] . Chemistry of Materials ,2013,25(7):1032-1039. [25] Bai P,Tian G Y. Statistical kinetics of phase-transforming nanoparticles in LiFePO 4 porous electrodes[J] . Electrochimica Acta ,2013,89:644-651. [26] Ge M Y,Rong J P,Fang X, et al . Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes[J] . Nano Research ,2013,6(3):174-181. [27] Abel P R,Chockla A M,Lin Y M, et al . Nanostructured Si (1- x ) Ge x for tunable thin film lithium-ion battery anodes[J] . Acs Nano ,2013, 7(3):2249-2257. [28] Liu X H, Fan F F,Yang H, et al . Self-limiting lithiation in silicon nanowires[J] . Acs Nano ,2013,7(2):1495-1503. [29] Philippe B,Dedryvere R,Gorgoi M, et al . Role of the LiPF 6 salt for the long-term stability of silicon electrodes in li-ion batteries A photoelectron spectroscopy study[J]. Chemistry of Materials ,2013,25(3):394-404. [30] Ulldemolins M,Cras F L,Pecquenard B. Memory effect highlighting in silicon anodes for high energy density lithium-ion batteries[J]. Electrochemistry Communications ,2013,27:22-25. [31] Jerliu B,Dorrer L,Huger E, et al . Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(20):7777-7784. [32] Levitas V I,Attariani H. Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor[J]. Scientific Reports ,2013,3:1615. [33] Radvanyi E,Vito E D,Porcher W, et al . Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy[J]. Journal of Materials Chemistry A ,2013,1(16):4956-4965. [34] Veith G M,Baggetto L,Adamczyk L A, et al . Electrochemical and solid-state lithiation of graphitic C 3 N 4 [J]. Chemistry of Materials ,2013,25(3):503-508. [35] He H,Huang C,Luo C W, et al . Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD[J]. Electrochimica Acta ,2013,92:148-152. [36] Tsubouchi S,Domi Y,Doi T, et al . Spectroscopic analysis of surface layers in close contact with edge plane graphite negative- electrodes[J]. Journal of the Electrochemical Society ,2013,160(4):A575-A580. [37] Hwang J,Woo S H,Shim J, et al . One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries[J]. Acs Nano ,2013,7(2):1036-1044. [38] Gourdin G.,Smith P H,Jiang T, et al . Lithiation of amorphous carbon negative electrode for Li-ion capacitor[J]. Journal of Electroanalytical Chemistry ,2013,688:103-112. [39] Yang Z C,Zhang Y,Kong J H, et al . Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials ,2013,25(5):704-710. [40] Guo Q,Qin X. High capacity of SnO 2 nanoparticles decorated graphene as an anode for lithium-ion batteries[J]. Ecs Solid State Letters ,2013,2(6):M41-M43. [41] Sun C F,Karki K,Jia Z, et al . A beaded-string silicon anode[J]. Acs Nano ,2013,7(3):2717-2724. [42] Zhou X S,Wan L J,Guo Y G. Binding SnO 2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Advanced Materials ,2013,25(15):2152-2157. [43] Tojo T,Fujisawa K,Muramatsu H, et al . Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing[J]. Rsc Advances ,2013,3(13):4161-4166. [44] Li X F,Zhong Y,Cai M, et al . Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries[J]. Electrochimica Acta ,2013,89:387-393. [45] Nacimiento F J,Lavela P,Tirado J L, et al . Sn-119 mossbauer spectroscopy analysis of Sn-Co-C composites prepared from a fuel oil pyrolysis precursor as anodes for Li-ion batteries[J]. Materials Chemistry and Physics ,2013,138(2-3):747-754. [46] Kravchyk K,Protesescu L,Bodnarchuk M I, et al . Monodisperse and inorganically capped Sn and Sn/SnO 2 nanocrystals for high-performance Li-ion battery anodes[J]. Journal of the American Chemical Society ,2013,135(11):4199-4202. [47] Tan C H,Qi G W,Li Y P, et al . The improved performance of porous Sn-Ni alloy as anode materials for lithium-ion battery prepared by electrochemical dissolution treatment[J]. International Journal of Electrochemical Science ,2013,8(2):1966-1975. [48] Kyeremateng N A,Dumur F,Knauth P, et al . Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries[J]. Comptes. Rendus. Chimie. ,2013,16(1):80-88. [49] Lu J,Peng Q,Wang Z Y, et al . Hematite nanodiscs exposing (001) facets:Synthesis,formation mechanism and application for Li-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(17):5232-5237. [50] Reddy M A,Breitung B,Chakravadhanula V S K, et al . CF x derived carbon FeF 2 nanocomposites for reversible lithium storage[J]. Advanced Energy Materials ,2013,3(3):308-313. [51] Wiaderek K M,Borkiewicz O J,Castillo-Martinez E, et al . Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy[J]. Journal of the American Chemical Society ,2013,135(10):4070-4078. [52] Li C L,Yin CL,Mu X K, et al . Top-down synthesis of open framework fluoride for lithium and sodium batteries[J]. Chemistry of Materials ,2013,25(6):962-969. [53] Schaefer J L,Yanga D A,Archer L A. High lithium transference number electrolytes via creation of 3-dimensional,charged,nanoporous networks from dense functionalized nanoparticle composites[J]. Chemistry of Materials ,2013,25(6):834-839. [54] Bouchet R,Maria S,Meziane R, et al . Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials ,2013,12(5):452-457. [55] Feng S W,Shi DY,Liu F, et al . Single lithium-ion conducting polymer electrolytes based on poly(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide anions[J]. Electrochimica Acta ,2013,93:254-263. [56] Kim S H,Choi KH,Cho S J, et al . Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(16):4949-4955. [57] Kil E H,Choi K H,Ha H J, et al . Imprintable,bendable,and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries[J]. Advanced Materials ,2013,25(10):1395-1400. [58] Zhou D,Fan L Z,Fan H H, et al . Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization[J]. Electrochimica Acta ,2013,89:334-338. [59] Epp V,Gun O,Deiseroth H J, et al . Long-range Li + dynamics in the lithium argyrodite Li 7 PSe 6 as probed by rotating-frame spin-lattice relaxation NMR[J]. Physical Chemistry Chemical Physics ,2013,15(19):7123-7132. [60] Epp V,Nakhal S,Lerch M, et al . Two-dimensional diffusion in Li 0.7 NbS 2 as directly probed by frequency-dependent Li-7 NMR[J]. Journal of Physics-Condensed Matter ,2013,25(19). [61] Chen H P,Tao H Z,Wu Q D, et al . Crystallization kinetics of superionic conductive Al(B,La)- incorporated LiTi 2 (PO 4 ) 3 glass-ceramics[J]. Journal of the American Ceramic Society ,2013,96(3):801-805. [62] Demeaux J,Lemordant D,Caillon-Caravanier M, et al . New insights into a high potential spinel and alkylcarbonate-based electrolytes[J]. Electrochimica Acta ,2013,89:163-172. [63] Basile A,Hollenkamp A F,Bhatt A I, et al . Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes[J]. Electrochemistry Communications ,2013,27:69-72. [64] Chen Z H,Ren Y,Jansen A N, et al . New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries[J]. Nature Communications ,2013,4:1513(article number). [65] Kang Y S,Yoon T,Lee S S, et al . 1,3,5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode[J]. Electrochemistry Communications ,2013,27:26-28. [66] Domi Y,Doi T,Yamanaka T, et al . Electrochemical AFM study of surface films formed on the HOPG edge plane in propylene carbonate-based electrolytes[J]. Journal of the Electrochemical Society ,2013,160(4):A678-A683. [67] Schmitz R,Muller R A,Schmitz R W, et al . SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry[J]. Journal of Power Sources ,2013,233:110-114. [68] Lim H D,Park K Y,Song H, et al . Enhanced power and rechargeability of a LiO 2 battery based on a hierarchical-fibril CNT electrode[J]. Advanced Materials ,2013,25(9):1348-1352. [69] Horstmann B,Danner T,Bessler W G. Precipitation in aqueous lithium-oxygen batteries:A model-based analysis[J]. Energy & Environmental Science ,2013,6(4):1299-1314. [70] Barile C J,Gewirth A A. Investigating the LiO 2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. Journal of the Electrochemical Society ,2013, 160(4):A549-A552. [71] Park J W,Yamauchi K,Takashima E, et al . Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries[J]. Journal of Physical Chemistry C ,2013,117(9):4431-4440. [72] Weng W,Pol V G,Amine K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries[J]. Advanced Materials ,2013, 25(11):1608-1615. [73] She Z W,Li W Y,Cha J J, et al . Sulphur-TiO 2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications ,2013,4:1331(article number). [74] Jeong S,Bresser D,Buchholz D, et al . Carbon coated lithium sulfide particles for lithium battery cathodes[J]. Journal of Power Sources ,2013,235:220-225. [75] Suo L M,Hu Y S,Li H, et al . A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications ,2013,4:1481(article number). [76] Bak S M,Nam K W,Chang W, et al . Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials[J]. Chemistry of Materials ,2013,25(3):337-351. [77] Wang X J,Hou Y Y,Zhu Y S, et al . An aqueous rechargeable lithium battery using coated Li metal as anode[J]. Scientific Reports ,2013,3:1401(article number). [78] Zhu J,Lu L,Zeng K Y. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques[J]. Acs Nano ,2013,7(2):1666-1675. [79] Ding F,Xu W,Graff G L, et al . Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society ,2013,135(11):4450-4456. [80] Andre D,Nuhic A,Soczka-Guth T, et al . Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles[J]. Engineering Applications of Artificial Intelligence ,2013,26(3):951-961. [81] Bae C J,Erdonmez C K,Halloran J W, et al . Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance[J]. Advanced Materials ,2013,25(9):1254-1258. [82] Klein R,Chaturvedi N A,Christensen J, et al . Electrochemical model based observer design for a lithium-ion battery[J]. Ieee Transactions on Control Systems Technology ,2013,21(2):289-301. [83] Lin C K,Ren Y,Amine K, et al . In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery[J]. Journal of Power Sources ,2013,230:32-37. [84] Vortmann B,Nowak S,Engelhard C. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry[J]. Analytical Chemistry ,2013,85(6):3433-3438. [85] Downie L E,Krause L J,Burns J C, et al . In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society ,2013,160(4):A588-A594. [86] Ji Y,Zhang Y C,Wang C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society ,2013, 160(4):A636-A649. [87] Kassem M,Delacourt C. Postmortem analysis of calendar-aged graphite/LiFePO 4 cells[J]. Journal of Power Sources ,2013,235:159-171. [88] Wang B,Richardson T J,Chen G Y. Stable and high-rate overchange protection for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics ,2013,15(18):6849-6855. [89] Wu S H,Huang A. Effects of tris(pentafluorophenyl)borane (TPFPB)as an electrolyte additive on the cycling performance of LiFePO 4 batteries[J]. Journal of the Electrochemical Society ,2013,160(4):A684-A689. [90] Xu S,Zhang Y H,Cho J, et al . Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications ,2013,4:1543(article number). [91] Cho KY,Kwon Y I,Youn J R, et al . Interaction analysis between binder and particles in multiphase slurries[J]. Analyst ,2013,138(7):2044-2050. [92] Kulish V V,Malyi O I,Ng M F, et al . Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations[J]. Rsc Advances ,2013,3(13):4231-4236. [93] Bhattacharya J,Wolverton C. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes[J]. Physical Chemistry Chemical Physics ,2013,15(17):6486-6498. [94] Jalem R,Yamamoto Y,Shiiba H, et al . Concerted migration mechanism in the Li-ion dynamics of garnet-type Li 7 La 3 Zr 2 O 12 [J]. Chemistry of Materials ,2013,25(3):425-430. [95] Fisher C A J,Kuganathan N,Islam M S. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li 2 MnSiO 4 [J]. Journal of Materials Chemistry A ,2013,1(13):4207-4214. [96] Garcia-Lastra J M,Myrdal J S G,Christensen R, et al . DFT plus U study of polaronic conduction in Li 2 O 2 and Li 2 CO 3 :Implications for Li-air batteries[J]. Journal of Physical Chemistry C ,2013,117(11):5568-5577. [97] Borodin O,Zhuang G R V,Ross P N, et al . Molecular dynamics simulations and experimental study of lithium-ion transport in dilithium ethylene dicarbonate[J]. Journal of Physical Chemistry C ,2013,117(15):7433-7444. [98] Chou C Y,Hwang G S. Surface effects on the structure and lithium behavior in lithiated silicon:A first principles study[J]. Surface Science ,2013,612:16-23. [99] Hao F,Fang D N. Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries:The effects of the shell and surface/interface stress[J]. Journal of the Electrochemical Society ,2013,160(4):A595-A600. [100] Lee S G,Jeon DH,Kim B M, et al . Lattice Boltzmann simulation for electrolyte transport in porous electrode of lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(4):H258-H265. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||