1 |
王莉, 谢乐琼, 田光宇, 等. 锂离子电池安全事故:安全性问题,还是可靠性问题[J]. 储能科学与技术, 2021, 10 (1): 1-6.
|
|
WANG L, XIE L, TIAN G, et al. Safety accidents of Li-ion batteries: Reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10 (1): 1-6.
|
2 |
NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18: 252-264.
|
3 |
王其钰, 禹习谦, 李泓, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.
|
|
WANG Q, YU X, LI H, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
|
4 |
NAGPURE S C, BHUSHAN B, BABU S S. Multi-scale characterization studies of aged Li-ion large format cells for improved performance: An overview[J]. Journal of the Electrochemical Society, 2013, 160(11): A2111-A2154.
|
5 |
孙兴伟, 王龙龙, 崔光磊, 等. 固态聚合物锂离子电池失效机制及其表征技术[J]. 储能科学与技术, 2019, 8 (6): 1024-1032.
|
|
SUN X, WANG L, CUI G, et al. Failure mechanisms and characterization techniques for solid state polymer lithium batteries[J]. Energy Storage Science and Technology, 2019, 8 (6):1024-1032.
|
6 |
Li R, WU J, WANG H Y, et al. Reliability assessment and failure analysis of lithium iron phosphate batteries[J]. Information Sciences, 2014, 259: 359-368.
|
7 |
XIA Q, WANG Z, REN Y, et al. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles[J]. Journal of Power Sources, 2018, 386: 10-20.
|
8 |
GANDOMAN F H, AHMADI A, BOSSCHE P V D, et al. Status and future perspectives of reliability assessment for electric vehicles[J]. Reliability Engineering & System Safety, 2019, 183: 1-16.
|
9 |
XIA B, MI C. A fault-tolerant voltage measurement method for series connected battery packs[J]. Journal of Power Sources, 2016, 308: 83-96.
|
10 |
KANG Y, DUAN B, ZHOU Z, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132-144.
|
11 |
WANG L, SUN Y, WANG X, et al. Reliability modeling method for lithium-ion battery packs considering the dependency of cell degradations based on a regression model and copulas[J]. Materials, 2019, 12 (1054): 1-15.
|
12 |
UY O M, MAURER R H. Fault tree safety analysis of a large Li/SoCl2, spacecraft battery[J]. Journal of Power Sources, 1987, 21 (3): 207-225.
|
13 |
LEVY. Fault tree analysis: A tool for battery safety and reliability studies[C]//Annual Battery Conference on Applications and Advances, Long Beach, CA (USA), 1990, Jan.
|
14 |
BRIK K, AMMAR F B. The Fault tree analysis of the lead acid battery's degradation[J]. Journal of Electrical Systems, 2008, 4 (2): 145-159.
|
15 |
THEIN S, CHANG Y S. Decision making model for lifecycle assessment of lithium-ion battery for electric vehicle: A case study for smart electric bus project in Korea[J]. Journal of Power Sources, 2014, 249 (3): 142-147.
|
16 |
CHATZINIKOLAOU E, ROGERS D J. A comparison of grid-connected battery energy storage system designs[J]. IEEE Transactions on Power Electronics, 2016, 99: 1.
|
17 |
PHAM T T, KUO T C, BUI D M. Reliability evaluation of an aggregate battery energy storage system in microgrids under dynamic operation[J]. Electrical Power and Energy Systems, 2020, 118: 1-22.
|
18 |
LI C Y, CHEN X, YI X S. Reliability analysis of primary battery packs based on the universal generating function method[J]. Structure, 2009, 223: 251-257.
|
19 |
LIU Z, TAN C M, LENG F. A reliability-based design concept for lithium-ion battery pack in electric vehicles[J]. Reliability Engineering and System Safety, 2015, 134: 169-177.
|
20 |
CHEN Y, ZHENG Y, LUO F, et al. Reliability evaluation of distribution systems with mobile energy storage systems[J]. Iet Renewable Power Generation, 2017, 10 (10): 1562-1569.
|
21 |
LI Y, OMAR N, NANINI-MAURY E, et al. Performance and reliability assessment of NMC lithium ion batteries for stationary application[C]//2016 IEEE Vehicle Power Propulsion Conference VPPC 2016-Proc, 2016.
|
22 |
ARNAUD D, DUBARRY M. Durability and reliability of electric vehicle batteries under electric utility grid operations. Part 1: cell-to-cell variations and preliminary testing[J]. Batteries, 2016, 2: 28-32.
|
23 |
LIU M, LI W, WANG C, et al. Reliability evaluation of large scale battery energy storage systems[J]. IEEE Transactions on Smart Grid, 2016(99): 1-11.
|
24 |
CHEN Y, EVANS J W. Thermal analysis of lithium polymer batteries by a two dimensional model-thermal behavior and design optimization[J]. Electrochemical Acta, 1994, 39(4): 517-526.
|
25 |
CHEN Y, EVANS J W. Three-dimensional thermal modeling of lithium polymer batteries under galvanostatic discharge and dynamic power profile[J]. Journal of The Electrochemical Society, 1994, 141(11): 2947-2955.
|
26 |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124.
|
27 |
杨志刚, 黄慎, 赵兰萍. 电动汽车锂离子电池组散热优化设计[J]. 计算机辅助工程, 2011, 20(3):1-5.
|
|
YANG Z, HUANG S, ZHAO L. Optimization design on heat dissipation of lithium-ion battery pack in electric vehicle[J]. Computer Aided Engineering, 2011, 20(3): 1-5.
|
28 |
SUN H, WANG X, TOSSAN B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack[J]. Journal of Power Sources, 2012, 206: 349-356.
|
29 |
LIU Z M, WANG Y X, ZHANG J, et al. Shortcut computation for the thermal management of a large air-cooled battery pack[J]. Applied Thermal Engineering, 2014, 66: 445-452.
|
30 |
FATHABADI H. A novel design including cooling media for lithium-ion batteries pack used in hybrid and electric vehicles[J]. Journal of Power Sources, 2014, 245(1): 495-500.
|
31 |
SEVERINO B, GANA F, PALMA-BEHNKE R. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms[J]. Journal of Power Sources, 2014, 267: 288-299.
|
32 |
BRUEN T, MARCO J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system[J]. Journal of Power Sources, 2016, 310: 91-101.
|
33 |
SAW L H, YE Y, TAY A A O, et al. Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling[J]. Applied Energy, 2016, 177(1): 783-792.
|
34 |
TORCHIO M, MAGNI L, GOPALUNI R B, et al. LIONSIMBA: A matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control[J]. Journal of the Electrochemical Society, 2016, 163(7): A1192-A1205.
|
35 |
罗伟林, 周少云, 刘辉, 等. 48 V/50 Ah磷酸铁锂电池组热仿真[J]. 装备环境工程, 2018, 15(12): 6-15.
|
|
LUO W L, ZHOU S Y, LIU H, et al. Thermal simulation for a 48 V/50 Ah lithium-ion battery pack[J]. Equipment Environmental Engineering, 2018, 15(12): 6-15.
|
36 |
李望, 卢耀辉, 李振生, 等. 车用锂离子电池组冷却系统传热仿真分析[J]. 装备环境工程, 2021, 18(2): 6-12.
|
|
LI W, LU Y H, LI Z S, et al. Simulation analysis of heat transfer in cooling system of Li-ion battery pack for vehicles[J]. Equipment Environmental Engineering, 2021, 18(2): 6-12.
|
37 |
XIA Q, WANG Z, REN Y, et al. Performance reliability analysis and optimization of lithium-ion battery packs based on multiphysics simulation and response surface methodology[J]. Journal of Power Sources, 2021, 490: 229567.
|
38 |
XIA Q, WANG Z, REN Y, et al. A modified reliability model for lithium-ion battery packs based on the stochastic capacity degradation and dynamic response impedance[J]. Journal of Power Sources, 2019, 423: 40-51.
|