1 |
ZHANG S, CHEN W Y. China's energy transition pathway in a carbon neutral vision[J]. Engineering, 2021: doi:10.1016/j.eng.2021.09.004.
|
2 |
陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
|
|
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
|
3 |
ZHAO Z M, ZHANG C K, LI X F. Opportunities and challenges of organic flow battery for electrochemical energy storage technology[J]. Journal of Energy Chemistry, 2022, 67: 621-639.
|
4 |
ZHANG X J, QIN C, LOTH E, et al. Arbitrage analysis for different energy storage technologies and strategies[J]. Energy Reports, 2021, 7: 8198-8206.
|
5 |
ZHANG Z Y, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: doi: 10.1016/j.rser.2021.111263.
|
6 |
PARASURAMAN A, LIM T M, MENICTAS C, et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta, 2013, 101: 27-40.
|
7 |
SOLOVEICHIK G L. Flow batteries: Current status and trends[J]. Chemical Reviews, 2015, 115(20): 11533-11558.
|
8 |
WU M C, LIU M Y, LONG G F, et al. A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries[J]. Applied Energy, 2014, 136: 576-581.
|
9 |
王晓丽, 张宇, 李颖, 等. 全钒液流电池技术与产业发展状况[J]. 储能科学与技术, 2015, 4(5): 458-466.
|
|
WANG X L, ZHANG Y, LI Y, et al. Vanadium flow battery technology and its industrial status[J]. Energy Storage Science and Technology, 2015, 4(5): 458-466.
|
10 |
刘宗浩, 张华民, 高素军, 等. 风场配套用全球最大全钒液流电池储能系统[J]. 储能科学与技术, 2014, 3(1): 71-77.
|
|
LIU Z H, ZHANG H M, GAO S J, et al. The world's largest all-vanadium redox flow battery energy storage system for a wind farm[J]. Energy Storage Science and Technology, 2014, 3(1): 71-77.
|
11 |
FRU S E, TSAFACK P, TANYI E. The exploitation of open circuit voltage parameters and energy recovery after discharge, to decipher the state of health of lead acid batteries[J]. Journal of Energy Storage, 2021, 44: doi:10.1016/j.est.2021.103477.
|
12 |
CHIANG Y H, SEAN W Y, KE J C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2011, 196(8): 3921-3932.
|
13 |
LIU H J, XU Q, YAN C W. On-line mass spectrometry study of electrochemical corrosion of the graphite electrode for vanadium redox flow battery[J]. Electrochemistry Communications, 2013, 28: 58-62.
|
14 |
潘斌, 董栋, 钱东培, 等. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
|
|
PAN B, DONG D, QIAN D P, et al. Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 189-194.
|
15 |
CHEN T, DONG S J, XIE Y W. Influence of the ohmic polarization effect on thin-layer spectroelectrochemistry[J]. Journal of Electroanalytical Chemistry, 1994, 379(1/2): 239-245.
|
16 |
MESSAGGI M, RABISSI C, GAMBARO C, et al. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness[J]. Journal of Power Sources, 2020, 449: doi:10.1016/j.jpowsour.2019.227588.
|
17 |
SU S C, ZHANG Q, GAO X, et al. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16181-16190.
|