储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 1077-1092.doi: 10.19799/j.cnki.2095-4239.2022.0081
• 热点点评 • 上一篇
岑官骏(), 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()
收稿日期:
2022-02-18
修回日期:
2022-02-20
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
黄学杰
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
作者简介:
岑官骏(1997—),男,博士研究生,研究方向为固态锂离子电池负极材料,E-mail:基金资助:
Guanjun CEN(), Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()
Received:
2022-02-18
Revised:
2022-02-20
Online:
2022-03-05
Published:
2022-03-11
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年12月1日至2022年1月31日上线的锂电池研究论文,共有3795篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。金属锂负极的研究包含金属锂的表面修饰、三维结构设计及其沉积形态和均匀性的研究。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。而其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计和界面修饰和影响锂枝晶生长的因素。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。电池测试技术方面涵盖了对Li金属的沉积形貌及SEI、快充放条件下正极材料各性质、固态电池的界面问题的观测和分析。理论计算涉及掺杂固体电解质电导率、固态电池中界面应力分析等进行了探讨。而界面问题侧重于关注固体电解质和Li金属负极界面稳定性。此外,电极预锂化研究论文也有多篇。
中图分类号:
岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092.
Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092.
1 | RAJKAMAL A, KIM H. Formation of pillar-ions in the Li layer decreasing the Li/Ni disorder and improving the structural stability of cation-doped Ni-rich LiNi0.8Co0.1Mn0.1O2: A first-principles verification[J]. ACS Applied Energy Materials, 2021, 4(12): 14068-14079. |
2 | GENG C X, RATHORE D, HEINO D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials[J]. Advanced Energy Materials, 2022, 12(6): doi: 10.1002/aenm.202103067. |
3 | PARK N Y, RYU H H, KUO L Y, et al. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles[J]. ACS Energy Letters, 2021, 6(12): 4195-4202. |
4 | MA C, CHEN M J, DING Z P, et al. Anchoring interfacial nickel cations by tunable coordinative structure for highly stabilized nickel-rich layered oxide cathodes[J]. Nano Energy, 2022, 93: doi: 10.1016/j.nanoen.2021.106803. |
5 | JEONG M, LEE W, YUN S, et al. Strategic approach to diversify design options for Li-ion batteries by utilizing low-Ni layered cathode materials[J]. Advanced Energy Materials, 2022, 12(7): doi: 10.1002/aenm.202103052. |
6 | KANEDA H, FURUICHI Y, IKEZAWA A, et al. Effects of aluminum substitution in nickel-rich layered LiNixAl1– xO2 (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance[J]. Journal of Materials Chemistry A, 2021, 9(38): 21981-21994. |
7 | WANG D Q, WU Y Q, WU C, et al. Highly oriented{010}crystal plane induced by boron in cobalt-free Li-and Mn-rich layered oxide[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2711-2719. |
8 | LI Z B, LI Y W, ZHANG M J, et al. Modifying Li@Mn6 superstructure units by Al substitution to enhance the long-cycle performance of co-free Li-rich cathode[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101962. |
9 | GAO Y, QIAO F, YOU J, et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-021-27429-8. |
10 | DING J F, XU R, MA X X, et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries[J]. Angewandte Chemie, 2022, doi: 10.1002/anie.202115602. |
11 | HARRISON K L, MERRILL L C, LONG D M, et al. Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries[J]. iScience, 2021, 24(12): doi: 10.1016/j.isci.2021.103394. |
12 | LIU Z Y, HE B Y, ZHANG Z B, et al. Lithium/graphene composite anode with 3D structural LiF protection layer for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2871-2880. |
13 | YE Y, ZHAO Y, ZHAO T, et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma.202105029. |
14 | CHEN C, LIANG Q W, CHEN Z X, et al. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes[J]. Angewandte Chemie, 2021, 60(51): 26718-26724. |
15 | CUI X M, CHU Y, WANG X H, et al. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44983-44990. |
16 | WANG Q, WAN J, CAO X, et al. Organophosphorus hybrid solid electrolyte interphase layer based on LixPO4 enables uniform lithium deposition for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202107923. |
17 | WANG J, HU H M, DUAN S R, et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202110468. |
18 | LI S, WANG X S, HAN B, et al. Ultrathin and high-modulus LiBO2 layer highly elevates the interfacial dynamics and stability of lithium anode under wide temperature range[J]. Small, 2021: doi: 10.1002/smll.202106427. |
19 | HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6(3): 303-313. |
20 | LU Z Y, GUO Y, ZHANG S W, et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(31): doi: 10.1002/adma.202101745. |
21 | KIM S S, SENTHIL C, JUNG S M, et al. Chemically engineered alloy anode enabling fully reversible conversion reaction: Design of a C-Sn-bonded aerofilm anode[J]. Journal of Materials Chemistry A, 2022, 10(7): 3595-3604. |
22 | REN Y, XIANG L Z, YIN X C, et al. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202110046. |
23 | HARPAK N, DAVIDI G, PATOLSKY F. Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132077. |
24 | BURDETTE-TROFIMOV M K, ARMSTRONG B L, HEROUX L, et al. Competitive adsorption within electrode slurries and impact on cell fabrication and performance[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230914. |
25 | MOYASSARI E, ROTH T, KÜCHER S, et al. The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle stability, and expansion[J]. Journal of the Electrochemical Society, 2022, 169(1): doi: 10.1149/1945-7111/ac4545. |
26 | YUAN J M, REN W F, WANG K, et al. Ultrahighly elastic lignin-based copolymers as an effective binder for silicon anodes of lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 166-176. |
27 | BAYıNDıR O, SOHEL I H, EROL M, et al. Controlling the crystallographic orientation of graphite electrodes for fast-charging Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 891-899. |
28 | KAZYAK E, CHEN K H, CHEN Y X, et al. Enabling 4 C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte[J]. Advanced Energy Materials, 2022, 12(1): doi: 10.1002/aenm.202102618. |
29 | WEN X, ZENG Q H, GUAN J Z, et al. 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries[J]. Journal of Materials Chemistry A, 2022, 10(2): 707-718. |
30 | LI W, GAO J, TIAN H Y, et al. SnF 2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angewandte Chemie, 2022, 61(6): doi: 10.1002/anie.202114805. |
31 | LI M J, YANG J X, SHI Y Q, et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials, 2022, 34(5): doi: 10.1002/adma.202107226. |
32 | LECHARTIER M, PORCARELLI L, ZHU H J, et al. Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity[J]. Materials Advances, 2022, 3(2): 1139-1151. |
33 | YANG L, TAO X Y, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063. |
34 | LUO X M, WU X Z, XIANG J Y, et al. Heterovalent cation substitution to enhance the ionic conductivity of halide electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47610-47618. |
35 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. |
36 | XU J R, LI Y X, LU P S, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer[J]. Advanced Energy Materials, 2022, 12(2): doi: 10.1002/aenm.202102348. |
37 | LEE Y, JEONG J, LEE H J, et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2022, 7(1): 171-179. |
38 | KHURRAM TUFAIL M, AHMAD N, ZHOU L, et al. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries[J]. Chemical Engineering Journal, 2021, 425: doi: 10.1016/j.cej.2021.130535. |
39 | PENG L F, YU C, ZHANG Z Q, et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability[J]. Chemical Engineering Journal, 2022, 430: doi: 10.1016/j.cej.2021.132896. |
40 | REN Y X, CUI Z H, BHARGAV A, et al. A self-healable sulfide/polymer composite electrolyte for long-life, low-lithium-excess lithium-metal batteries[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202106680. |
41 | WU H Y, CHEN X, ZHANG X Y, et al. Multidimensional nanobox structural carbon nanofibers with dual confined effect for boosting storage performance and electrochemical kinetics of alkali metal ion batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131207. |
42 | NAGATA H, AKIMOTO J. Excellent deformable oxide glass electrolytes and oxide-type all-solid-state Li2S-Si batteries employing these electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35785-35794. |
43 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
44 | ZHU X Y, CHANG Z, YANG H J, et al. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte[J]. Journal of Materials Chemistry A, 2022, 10(2): 651-663. |
45 | WANG X S, WANG S W, WANG H R, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries[J]. Advanced Materials, 2021, 33(52): doi: 10.1002/adma.202007945. |
46 | YU Z, RUDNICKI P E, ZHANG Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106. |
47 | FAN H M, LIU X W, LUO L B, et al. All-climate high-voltage commercial lithium-ion batteries based on propylene carbonate electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 574-580. |
48 | LIU X W, SHEN X H, LUO L B, et al. Designing advanced electrolytes for lithium secondary batteries based on the coordination number rule[J]. ACS Energy Letters, 2021, 6(12): 4282-4290. |
49 | WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): doi: 10.1002/aenm.202102299. |
50 | LI X, LIU J D, HE J, et al. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases[J]. Advanced Functional Materials, 2021, 31(37): doi: 10.1002/adfm.202104395. |
51 | YANG S X, ZHANG Y P, LI Z L, et al. Rational electrolyte design to form inorganic-polymeric interphase on silicon-based anodes[J]. ACS Energy Letters, 2021, 6(5): 1811-1820. |
52 | ZHANG Y Y, LI X, SIVONXAY E, et al. Silicon anodes with improved calendar life enabled by multivalent additives[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101820. |
53 | ZOU Y, FU A, ZHANG J, et al. Stabilizing the LiCoO2 interface at high voltage with an electrolyte additive 2, 4, 6-tris(4-fluorophenyl)boroxin[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 15042-15052. |
54 | HOLOUBEK J, YAN Q Z, LIU H D, et al. Oxidative stabilization of dilute ether electrolytes via anion modification[J]. ACS Energy Letters, 2022, 7(2): 675-682. |
55 | JIA H, ZHANG X H, XU Y B, et al. Toward the practical use of cobalt-free lithium-ion batteries by an advanced ether-based electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44339-44347. |
56 | PIAO Z H, XIAO P T, LUO R P, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries[J]. Advanced Materials, 2022: doi: 10.1002/adma.202108400. |
57 | FENG W L, YANG P, DONG X L, et al. A low temperature soldered all ceramic lithium battery[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1149-1156. |
58 | HAN Z L, LI S P, XIONG R Y, et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202108669. |
59 | WAN H L, ZHANG B, LIU S F, et al. Understanding LiI-LiBr catalyst activity for solid state Li2 S/S reactions in an all-solid-state lithium battery[J]. Nano Letters, 2021, 21(19): 8488-8494. |
60 | CAO C C, ZHONG Y J, CHANDULA WASALATHILAKE K, et al. A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(5): 2519-2527. |
61 | TANG J T, WANG L, TIAN C H, et al. Double-protected layers with solid-liquid hybrid electrolytes for long-cycle-life lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4170-4178. |
62 | PENG J, WU D X, SONG F M, et al. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202105776. |
63 | YAO Z Y, KANG Y, HOU M J, et al. Promoting homogeneous interfacial Li+ migration by using a facile N2 plasma strategy for all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202111919. |
64 | LI J W, LI Y Y, CHENG J, et al. In situ modified sulfide solid electrolyte enabling stable lithium metal batteries[J]. Journal of Power Sources, 2022, 518: doi: 10.1016/j.jpowsour.2021.230739. |
65 | ZHAO B, SHI Y R, WU J, et al. Stabilizing Li7P3S11/lithium metal anode interface by in situ bifunctional composite layer[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132411. |
66 | LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-27311-7. |
67 | LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4051-4060. |
68 | NAVA M, ZHANG S Y, PASTORE K S, et al. Lithium superoxide encapsulated in a benzoquinone anion matrix[J]. PNAS, 2021, 118(51): doi: 10.1073/pnas.2019392118. |
69 | MEISNER Q J, JIANG S S, CAO P F, et al. An in situ generated polymer electrolyte via anionic ring-opening polymerization for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(46): 25927-25933. |
70 | WANG J, ZHANG J, DUAN S R, et al. Interfacial lithium-nitrogen bond catalyzes sulfide oxidation reactions in high-loading Li2S cathode[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132352. |
71 | ZENG Z H, NONG W, LI Y, et al. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2 S in lithium-sulfur batteries[J]. Advanced Science, 2021, 8(23): doi: 10.1002/advs.202102809. |
72 | CHEN X, JI H J, RAO Z X, et al. Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(1): doi: 10.1002/aenm.202102774. |
73 | WU W H, LI X Y, LIU L L, et al. Uniform coverage of high-loading sulfur on cross-linked carbon nanofibers for high reaction kinetics in Li-S batteries with low electrolyte/sulfur ratio[J]. Journal of Materials Chemistry A, 2022, 10(3): 1433-1441. |
74 | GAO R H, ZHANG Q, ZHAO Y, et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202110313. |
75 | HAO X G, MA J B, CHENG X, et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2 S[J]. Advanced Materials, 2021, 33(52): doi: 10.1002/adma.202105362. |
76 | HE J R, BHARGAV A, MANTHIRAM A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters, 2022, 7(2): 583-590. |
77 | SUN F, QU Z B, WANG H, et al. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode[J]. Nano Research, 2021, 14(1): 131-138. |
78 | WANG S, HUANG F Y, LI X P, et al. Regulating Li2S deposition by Ostwald ripening in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4204-4210. |
79 | XUE S, ZHAO S, LU J, et al. Sulfide with oxygen-rich carbon network for good lithium-storage kinetics[J]. ACS Nano, 2021: doi: 10.1021/acsnano.1c09446. |
80 | YANG D W, LIANG Z F, TANG P Y, et al. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries[J]. Advanced Materials, 2022: doi: 10.1002/adma.202108835. |
81 | MAYER D, WURBA A K, BOLD B, et al. Investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance[J]. Processes, 2021, 9(11): doi: 10.3390/pr9112009. |
82 | NOMURA Y, YAMAMOTO K, YAMAGISHI Y, et al. Lithium transport pathways guided by grain architectures in Ni-rich layered cathodes[J]. ACS Nano, 2021, 15(12): 19806-19814. |
83 | OKASINSKI J S, SHKROB I A, RODRIGUES M T F, et al. Time-resolved X-ray operando observations of lithiation gradients across the cathode matrix and individual oxide particles during fast cycling of a Li-ion cell[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac3941. |
84 | TONIN G, VAUGHAN G B M, BOUCHET R, et al. Operando X-ray absorption tomography for the characterization of lithium metal electrode morphology and heterogeneity in a liquid Li/S cell[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230854. |
85 | ZHANG Z W, LI Y Z, XU R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
86 | CHANG W, MAY R, WANG M, et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26632-x. |
87 | BANERJEE S, HOLEKEVI CHANDRAPPA M L, ONG S P. Role of critical oxygen concentration in the β-Li3PS4– xOx solid electrolyte[J]. ACS Applied Energy Materials, 2022, 5(1): 35-41. |
88 | ROMANO BRANDT L, NISHIO K, SALVATI E, et al. Improving ultra-fast charging performance and durability of all solid state thin film Li-NMC battery-on-chip systems by in situ TEM lamella analysis[J]. Applied Materials Today, 2022, 26: doi: 10.1016/j.apmt.2021.101282. |
89 | YAN H H, TANTRATIAN K, ELLWOOD K, et al. How does the creep stress regulate void formation at the lithium-solid electrolyte interface during stripping?[J]. Advanced Energy Materials, 2022, 12(2): doi: 10.1002/aenm.202102283. |
90 | SHIN W, MANTHIRAM A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022, doi: 10.1002/anie.202115909. |
91 | CHUN G H, SHIM J H, YU S. Computational investigation of the interfacial stability of lithium chloride solid electrolytes in all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1241-1248. |
92 | FU Y Y, MA C. Interplay between Li3YX6(X=Cl or Br) solid electrolytes and the Li metal anode[J]. Science China Materials, 2021, 64(6): 1378-1385. |
93 | ZHENG C, ZHANG J, XIA Y, et al. Unprecedented self-healing effect of Li6 PS5 Cl-based all-solid-state lithium battery[J]. Small, 2021, 17(37): doi: 10.1002/smll.202101326. |
94 | ZUO T T, RUEß R, PAN R, et al. A mechanistic investigation of the Li10GeP2S12|LiNi1- x- yCoxMnyO2 interface stability in all-solid-state lithium batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26895-4. |
95 | HAARMANN L, ROHRER J, ALBE K. On the origin of zero interface resistance in the Li6.25Al0.25La3Zr2O12|Li0 system: An atomistic investigation[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52629-52635. |
96 | ZHAO X, YI R W, ZHENG L, et al. Practical prelithiation of 4.5 V LiCoO2||Graphite batteries by a passivated lithium-carbon composite[J]. Small, 2021: doi: 10.1002/smll.202106394. |
97 | ZHANG L H, JEONG S, REINSMA N, et al. Decomposition of Li2O2 as the cathode prelithiation additive for lithium-ion batteries without an additional catalyst and the initial performance investigation[J]. Journal of the Electrochemical Society, 2021, 168(12): doi: 10.1149/1945-7111/ac3e46. |
98 | YU W, YANG J L, LI J, et al. Facile production of phosphorene nanoribbons towards application in lithium metal battery[J]. Advanced Materials, 2021, 33(35): doi: 10.1002/adma.202102083. |
99 | LEE G, OH S H, PARK B K, et al. Trimesitylborane-embedded radical scavenging separator for lithium-ion batteries[J]. Current Applied Physics, 2021, 31: 1-6. |
100 | BIZOT C, BLIN M A, GUICHARD P, et al. Aluminum Current collector for high voltage Li-ion battery. Part I: A benchmark study with statistical analysis[J]. Electrochemistry Communications, 2021, 126: doi: 10.1016/j.elecom.2021.107013. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||