储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 1077-1092.doi: 10.19799/j.cnki.2095-4239.2022.0081

• 热点点评 • 上一篇    

锂电池百篇论文点评(2021.12.12022.1.31

岑官骏(), 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2022-02-18 修回日期:2022-02-20 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 黄学杰 E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
  • 作者简介:岑官骏(1997—),男,博士研究生,研究方向为固态锂离子电池负极材料,E-mail:cenguanjun15@mails.ucas.ac.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100)

Reviews of selected 100 recent papers for lithium batteriesDec. 12021 to Jan. 312022

Guanjun CEN(), Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-02-18 Revised:2022-02-20 Online:2022-03-05 Published:2022-03-11
  • Contact: Xuejie HUANG E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年12月1日至2022年1月31日上线的锂电池研究论文,共有3795篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。金属锂负极的研究包含金属锂的表面修饰、三维结构设计及其沉积形态和均匀性的研究。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。而其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计和界面修饰和影响锂枝晶生长的因素。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。电池测试技术方面涵盖了对Li金属的沉积形貌及SEI、快充放条件下正极材料各性质、固态电池的界面问题的观测和分析。理论计算涉及掺杂固体电解质电导率、固态电池中界面应力分析等进行了探讨。而界面问题侧重于关注固体电解质和Li金属负极界面稳定性。此外,电极预锂化研究论文也有多篇。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3795 papers online from Dec. 1, 2021 to Jan. 31, 2022. 100 of them were selected to be highlighted. Layered oxide cathode including Ni-rich oxides and lithium-rich materials, are still under extensive investigations for the modification of doping and coating. Large efforts were devoted to design the three-dimensional structure electrode, interface modification, and inhomogeneity plating of lithium metal anode. For alloying mechanism anode materials, beside 3D structure design, many researchers pay attention to the binders. The researches of solid-state electrolytes mainly focused on synthesis, doping, structure design and stability of pre-existing materials and developing new materials, whereas liquid electrolytes mainly focused on the optimal design of solvents and lithium salts for different battery systems and testing different additives. For solid-state batteries, more papers are related to the design of composite cathode and the modification of interfaces. The works for lithium-sulfur batteries are mainly focused on improving the activity of sulfur and suppressing the "shuttle effect". The characterizations include the investigations on Li deposition, interfacial reaction, and structure of cathode materials under high current density. Furthermore, there are theoretical works for the conductivity solid electrolyte with doping, the analyses of interfacial stress, and the interfacial stability of solid state batteries. Prelithiation of electrodes are also studied in few papers.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: