储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 1052-1076.doi: 10.19799/j.cnki.2095-4239.2022.0105
陈海生1(), 李泓2(), 马文涛3, 徐玉杰1(), 王志峰4(), 陈满5(), 胡东旭1,6(), 李先锋7(), 唐西胜4(), 胡勇胜2(), 马衍伟4(), 蒋凯8(), 钱昊9(), 王青松10(), 王亮1, 张新敬1, 王星1, 徐德厚11, 周学志1, 刘为12, 吴贤章13, 汪东林14, 和庆钢15, 马紫峰16, 陆雅翔2, 张雪松4, 李泉2, 索鎏敏2, 郭欢1, 俞振华12, 梅文昕10, 秦鹏10
收稿日期:
2022-02-26
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
陈海生,李泓,马文涛,徐玉杰,王志峰,陈满,胡东旭,李先锋,唐西胜,胡勇胜,马衍伟,蒋凯,钱昊,王青松
E-mail:chen_hs@mail.etp.ac.cn;hli@iphy.ac.cn;xuyujie@iet.cn;Zhifeng@vip.sina.com;13926159826@139.com;@139.com;hudongxu@iet.cn;lixianfeng@dicp.ac.cn;tang@mail.iee.ac.cn;yshu@aphy.iphy.ac.cn;ywma@mail.iee.ac.cn;kjiang@hust.edu.cn;qianhhao@hyperstrong.com.cn;pinew@ustc.edu.cn
作者简介:
陈海生(1977—),男,研究员,研究方向为新型压缩空气储能系统、超临界流体储能系统、微型燃气轮机,E-mail:基金资助:
Haisheng CHEN1(), Hong LI2(), Wentao MA3, Yujie XU1(), Zhifeng WANG4(), Man CHEN5(), Dongxu HU1,6(), Xianfeng LI7(), Xisheng TANG4(), Yongsheng HU2(), Yanwei MA4(), Kai JIANG8(), Hao QIAN9(), Qingsong WANG10(), Liang WANG1, Xinjing ZHANG1, Xing WANG1, Dehou XU11, Xuezhi ZHOU1, Wei LIU12, Xianzhang WU13, Donglin WANG14, Qinggang HE15, Zifeng MA16, Yaxiang LU2, Xuesong ZHANG4, Quan LI2, Liumin SUO2, Huan GUO1, Zhenhua YU12, Wenxin MEI10, Peng QIN10
Received:
2022-02-26
Online:
2022-03-05
Published:
2022-03-11
Contact:
Haisheng CHEN,Hong LI,Wentao MA,Yujie XU,Zhifeng WANG,Man CHEN,Dongxu HU,Xianfeng LI,Xisheng TANG,Yongsheng HU,Yanwei MA,Kai JIANG,Hao QIAN,Qingsong WANG
E-mail:chen_hs@mail.etp.ac.cn;hli@iphy.ac.cn;xuyujie@iet.cn;Zhifeng@vip.sina.com;13926159826@139.com;@139.com;hudongxu@iet.cn;lixianfeng@dicp.ac.cn;tang@mail.iee.ac.cn;yshu@aphy.iphy.ac.cn;ywma@mail.iee.ac.cn;kjiang@hust.edu.cn;qianhhao@hyperstrong.com.cn;pinew@ustc.edu.cn
摘要:
本文对2021年度中国储能技术的研究进展进行了综述。通过对基础研究、关键技术和集成示范三方面的回顾和分析,总结得出了2021年中国储能技术领域的主要技术进展,包括抽水蓄能、压缩空气储能、飞轮储能、铅蓄电池、锂离子电池、液流电池、钠离子电池、超级电容器、新型储能技术、集成技术和消防安全技术等。研究结果表明,中国储能技术在基础研究、关键技术和集成示范方面均取得了重要进展,中国已经成为世界储能技术基础研究最活跃的国家,也已成为世界储能技术研发和示范的主要核心国家之一。
中图分类号:
陈海生, 李泓, 马文涛, 徐玉杰, 王志峰, 陈满, 胡东旭, 李先锋, 唐西胜, 胡勇胜, 马衍伟, 蒋凯, 钱昊, 王青松, 王亮, 张新敬, 王星, 徐德厚, 周学志, 刘为, 吴贤章, 汪东林, 和庆钢, 马紫峰, 陆雅翔, 张雪松, 李泉, 索鎏敏, 郭欢, 俞振华, 梅文昕, 秦鹏. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
Haisheng CHEN, Hong LI, Wentao MA, Yujie XU, Zhifeng WANG, Man CHEN, Dongxu HU, Xianfeng LI, Xisheng TANG, Yongsheng HU, Yanwei MA, Kai JIANG, Hao QIAN, Qingsong WANG, Liang WANG, Xinjing ZHANG, Xing WANG, Dehou XU, Xuezhi ZHOU, Wei LIU, Xianzhang WU, Donglin WANG, Qinggang HE, Zifeng MA, Yaxiang LU, Xuesong ZHANG, Quan LI, Liumin SUO, Huan GUO, Zhenhua YU, Wenxin MEI, Peng QIN. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
表1
2021年中国储能技术与示范进展"
序号 | 技术类型 | 关键技术进展 | 集成示范进展 |
---|---|---|---|
1 | 抽水蓄能 | ①大型抽水蓄能电站工程建设技术,国产盾构机抽水蓄能项目推广应用。②国内单机最大400 MW/700米水头抽水蓄能机组设计制造安装技术。③电动发电机分数极路比绕组技术在国内首次成功应用。④10 MW可变速海水抽水蓄能机组关键技术 | ①400 MW/700米级超高水头、高转速、大容量抽水蓄能机组。②首例高转速“零配重”抽水蓄能机组。③世界首条800米水头级的钢筋混凝土衬砌水道。④世界装机容量最大的抽水蓄能电站 |
2 | 压缩空气储能 | ①突破10 MW级六级间冷离心式压缩机、四级再热组合式透平膨胀级、高效超临界蓄热换热器等关键技术。②突破100 MW级宽工况组合式压缩机技术、高负荷轴流式膨胀机技术、高效蓄热换热器技术,以及系统集成与控制技术 | ①山东肥城国际首套10 MW盐穴先进压缩空气储能商业示范电站并网发电。②贵州毕节10 MW集气装置储气的压缩空气储能电站并网发电。③江苏金坛建设了60 MW盐穴压缩空气储能示范项目开展并网试验。④河北张家口市际首套100 MW先进压缩空气储能国家示范项目开展并网带电调试 |
3 | 储热储冷 | ①1100 ℃的储热陶瓷颗粒材料、700 ℃氯化物熔盐储热材料、复合相变、定形相变和仿生相变储热材料、Co3O4/CoO等金属氧化物反应物体系和钙基热化学储热材料等。②大容量长周期跨季节储热技术、储热储冷传热强化与材料改性技术、高效动态冰浆蓄冷技术。③系统控制与优化技术等 | ①采用熔盐储热的50 MW线性菲涅尔式太阳能热发电站和50 MW熔盐塔式光热发电。②张家口建成水体储热的太阳能储热采暖项目、亚临界水蓄热系统以及水合盐相变材料为冬奥会转播中心供暖。④北京实现三联供系统耦合冰蓄冷系统,基于相变材料的冷链运输技术已获得应用等 |
4 | 飞轮储能 | ①500 kW/180 MJ大容量飞轮本体。②300 kW级2万转高速电机技术。③飞轮储能的双馈电机励磁控制技术 | ①单机600 kW全磁悬浮飞轮储能系统下线。②霍林河1 MW飞轮储能系统交付。③阜新风电场站一次调频和惯量响应的飞轮储能通过并网前验收。④宁夏22 MW光火储耦合飞轮储能项目开工 |
5 | 铅蓄电池 | ①高电化学活性和铅炭兼容的新型炭材料。②宽温区、超长寿命、高能量转换效率、低成本的铅炭储能电池。③高电压大容量系统集成技术 | ①中国铁塔和中国联通分别采购1.097和1.089 GW·h铅酸铅炭电池。②2020年并网的雉城(金陵变)12 MW/48 MW·h铅炭储能项目正式运行 |
6 | 锂离子电池 | ①高镍正极材料。②纳米硅碳负极材料、③原位固态化锂电池技术、④混合固液电解质锂离子储能电池技术 | ①晋江36 MW/108 MW·h锂补偿磷酸铁锂储能系统实现示范应用。②无模组技术与刀片电池技术的推广应用。③提出锂离子和钠离子电池集成解决方案,以及三元正极与磷酸铁锂电芯混合排布的双体系电池系统等 |
7 | 液流电池 | ①可焊接全钒液流电池技术。②50 kW全钒液流电池大功率电堆技术。③锌基液流电池和铁铬液流电池新技术 | ①10 MW/40 MW·h网源友好型风场项目投运②全球首个光伏储能户外实证实验平台全钒液流电池储能系统交付③大连200 MW/800 MW·h全钒液流电池储能调峰电站一期工程完成主体工程建设 |
8 | 钠离子电池 | ①正负极材料制备放大技术。②电解液/隔膜体系优选技术。③高安全、高倍率和宽温电芯设计制造技术④电池的安全性设计与评价技术。⑤电池大规模筛选及成组技术等 | ①全球首套1 MW·h钠离子电池光储充智能微网示范系统投入运行。②宁德时代钠离子电池产品的发布 |
9 | 超级电容器 | ①木质活性炭材料功能化定向调控技术。②物理沉积铝-氧化去除模板-梯度退火的泡沫铝制备技术。③负极预嵌锂技术等 | ①国内首套变电站超级电容微储能装置投运。②国内首个直流微网的超级电容器储能系统实现应用。③超级电容器在新能源交通领域取得了多个示范应用 |
10 | 储能新技术 | ①液态金属大容量电池界面稳定调控技术、表面陶瓷金属梯度化设计工艺、双等效电路融合模型、5.5 kW·h的电池组模型。②铝离子电池正极材料、锌离子负极材料等。③水系电池新型纳米结构正极材料、电解液添加剂、新型盐包水结构和水/有机共溶剂结构等 | — |
11 | 集成技术 | ①智能诊断技术②电池系统和PCS进行深度一体化设计技术。③高效智能温控技术和液冷技术 | ①高效的智能能量管理及大数据运维管理技术在海阳高能量密度1500 V磷酸铁锂储能电站得到应用。②“防护消泄”四重集成设计在乌兰察布电网友好绿色电站示范项目中应用 |
12 | 消防安全 技术 | ①单一式热管理系统的优化和混合式热管理技术。②基于机器学习的优化预警方法和分级预警策略③间歇喷雾优化模式,新型绝缘灭火剂如全氟己酮、液氮等 | 多信息融合的监测预警技术和全氟己酮程控喷射技术示范应用 |
1 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
2 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
3 | 陈海生, 凌浩恕, 徐玉杰. 能源革命中的物理储能技术[J]. 中国科学院院刊, 2019, 34(4): 450-459. |
CHEN H S, LING H S, XU Y J. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 450-459. | |
4 | 陈海生. "双碳"目标下的储能发展[J]. 中国电力企业管理, 2021(22): 23-24. |
5 | GONG G X, LV J L, JIANG X J, et al. Grid-connection control of doubly fed variable speed pumped storage unit[C]//2021 5th International Conference on Green Energy and Applications (ICGEA), 2021, Singapore, IEEE, 2021: 52-57. |
6 | 龚国仙, 吕静亮, 姜新建, 等. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9(6): 1878-1884. |
GONG G, LYU J, JIANG X, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science and Technology, 2020, 9(6): 1878-1884. | |
7 | 陈亚红, 邓长虹, 武荷月, 等. 发电工况可变速抽蓄机组模式切换过程多阶段柔性协调控制[J]. 中国电机工程学报, 2021, 41(15): 5258-5274. |
CHEN Y H, DENG C H, WU H Y, et al. Multi-stage soft coordinated control of variable speed pumped storage unit in the process of mode conversion under the generation condition[J]. Proceedings of the CSEE, 2021, 41(15): 5258-5274. | |
8 | CHEN Y H, DENG C H, ZHAO Y T. Coordination control between excitation and hydraulic system during mode conversion of variable speed pumped storage unit[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10171-10185. |
9 | 赵志高. 抽水蓄能变速运行及协联调控优化研究[D]. 武汉: 武汉大学, 2021. |
10 | 赵志高, 杨建东, 董旭柱, 等. 基于动态实验的双馈抽水蓄能机组空载特性与变速演化[J/OL].中国电机工程学报, 2022, doi:10.13334/j.0258-8013.pcsee.211674. |
ZHAO Z, YANG J, DONG X, et al. No-load characteristics and variable speed evolution of doubly-fed pumped storage unit based on dynamic experiment platform[J]. Proceedings of the CSEE, 2022, doi:10.13334/j.0258-8013.pcsee.211674. | |
11 | YAO W W, DENG C H, LI D L, et al. Optimal sizing of seawater pumped storage plant with variable-speed units considering offshore wind power accommodation[J]. Sustainability, 2019, 11(7): doi: 10.3390/su11071939. |
12 | 杨森, 张青, 高立艾. 风-光-抽水蓄能联合发电系统的优化运行[J]. 河北大学学报(自然科学版), 2021, 41(1): 106-112. |
YANG S, ZHANG Q, GAO L A. Optimal operation of wind-light-pumped storage combined power generation system[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(1): 106-112. | |
13 | XU B B, LI H H, CAMPANA P E, et al. Dynamic regulation reliability of a pumped-storage power generating system: Effects of wind power injection[J]. Energy Conversion and Management, 2020, 222: doi: 10.1016/j.enconman.2020.113226. |
14 | 王珏, 廖溢文, 韩文福, 等. 碳达峰背景下抽水蓄能-风电联合系统建模及有功功率控制特性研究[J]. 水利水电技术(中英文), 2021, 52(9): 172-181. |
WANG J, LIAO Y W, HAN W F, et al. Modeling and active power control characteristics of pumped storage-wind hybrid power system in the context of peak carbon dioxide emission[J]. Water Resources and Hydropower Engineering, 2021, 52(9): 172-181. | |
15 | TAO R, WANG Z W. Comparative numerical studies for the flow energy dissipation features in a pump-turbine in pump mode and turbine mode[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102835. |
16 | ZHANG X X, CHENG Y G, YANG Z Y, et al. Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system[J]. Renewable Energy, 2021, 163: 685-697. |
17 | GAO C Y, YU X Y, NAN H P, et al. A fast high-precision model of the doubly-fed pumped storage unit[J]. Journal of Electrical Engineering & Technology, 2021, 16(2): 797-808. |
18 | 张金凤, 赖良庆, 陈圣波, 等. 基于改进粒子群算法的水泵水轮机多目标优化[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 86-92. |
ZHANG J F, LAI L Q, CHEN S B, et al. Multi-objective optimization of pump turbine based on improved partical swarm optimization algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 86-92. | |
19 | 张庆贺, 杨科, 汪胜和, 等. 基于关闭煤矿沉陷区—地下硐室群的抽水蓄能电站构建与利用[J]. 水电能源科学, 2021, 39(3): 91-94. |
ZHANG Q H, YANG K, WANG S H, et al. Construction and utilization of pumped storage power station based on subsidence area-underground chamber group of closing coal mine[J]. Water Resources and Power, 2021, 39(3): 91-94. | |
20 | 卞正富, 周跃进, 曾春林, 等. 废弃矿井抽水蓄能地下水库构建的基础问题探索"[J]. 煤炭学报, 2021, 46(10): 3308-3318. |
BIAN Z F, ZHOU Y J, ZENG C L, et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society, 2021, 46(10): 3308-3318. | |
21 | SHANG D C, PEI P. Analysis of influencing factors of modification potential of abandoned coal mine into pumped storage power station[J]. Journal of Energy Resources Technology, 2021, 143(11): 1-34. |
22 | 赵海镜, 靳亚东, 刘书宝. 寒冷地区抽水蓄能电站水库最大冰厚计算方法研究[J]. 水力发电, 2021, 47(7): 30-32, 65. |
ZHAO H J, JIN Y D, LIU S B. Study on calculation method of maximum ice thickness of pumped-storage power station reservoir in cold region[J]. Water Power, 2021, 47(7): 30-32, 65. | |
23 | GUO H, XU Y J, ZHANG X H, et al. Dynamic characteristics and control of supercritical compressed air energy storage systems[J]. Applied Energy, 2021, 283: doi: 10.1016/apenergy.2021.116294. |
24 | CHEN L X, WANG Y Z, XIE M N, et al. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103009. |
25 | DZIDO A, KRAWCZYK P, WOŁOWICZ M, et al. Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications[J]. Renewable Energy, 2022, 184: 727-739. |
26 | GUO H, XU Y J, ZHU Y L, et al. Coupling properties of thermodynamics and economics of underwater compressed air energy storage systems with flexible heat exchanger model[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103198. |
27 | CHEN H, PENG Y H, WANG Y L, et al. Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump/turbine and spray cooling[J]. Energy Conversion and Management, 2020, 204: doi: 10.1016/j.econman.2020.112293. |
28 | MUCCI S, BISCHI A, BRIOLA S, et al. Small-scale adiabatic compressed air energy storage: Control strategy analysis via dynamic modelling[J]. Energy Conversion and Management, 2021, 243: doi: 10.1016/j.econman.2021.114358. |
29 | LI J, MAO Y, YANG L X.Temperature distribution and heat saturating time of regenerative heat transfer[J]. Journal of Thermal Science, 2006, 15(2): 175-180. |
30 | 张丹, 左志涛, 周鑫, 等. 跨声速轴流压缩机动静叶弯参数耦合关系[J]. 储能科学与技术, 2021, 10(5): 1544-1555. |
ZHANG D, ZUO Z T, ZHOU X, et al. Coupling relationship of compound lean parameters of transonic axial compressor[J]. Energy Storage Science and Technology, 2021, 10(5): 1544-1555. | |
31 | SUN J T, HOU H C, ZUO Z T, et al. Numerical study on wet compression in a supercritical air centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(3): 384-397. |
32 | SUN J T, ZHOU X, LIANG Q, et al. The effect of wet compression on a centrifugal compressor for a compressed air energy storage system[J]. Energies, 2019, 12(5): doi: 10.3390/en12050906. |
33 | 孟冲, 左志涛, 郭文宾, 等. 压缩空气储能系统高压离心压缩机进口导叶调节规律研究[J]. 工程热物理学报, 2021, 42(11): 2834-2840. |
MENG C, ZUO Z T, GUO W B, et al. Research on regulation law of inlet guide vane in high-pressure centrifugal compressor of CAES[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2834-2840. | |
34 | GUO W B, ZUO Z T, SUN J T, et al. Experimental investigation on off-design performance and adjustment strategies of the centrifugal compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2021, 38: doi: 10.1016/j.est.2021.102515. |
35 | WANG X, LI W, ZHANG X H, et al. Flow characteristic of a multistage radial turbine for supercritical compressed air energy storage system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(6): 622-640. |
36 | 孙冠珂, 李文, 张雪辉, 等. 向心涡轮进气结构的气动性能及损失机理[J]. 航空动力学报, 2015, 30(8): 1926-1935. |
SUN G K, LI W, ZHANG X H, et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power, 2015, 30(8): 1926-1935. | |
37 | 孙冠珂, 李文, 张雪辉, 等. 向心涡轮蜗壳截面尺寸对气动性能的影响[J]. 科学技术与工程, 2014, 14(26): 72-80, 91. |
SUN G K, LI W, ZHANG X H, et al. Study on the effect of variation of the volute cross-sectional dimension on radial turbine performance[J]. Science Technology and Engineering, 2014, 14(26): 72-80, 91. | |
38 | SHAO Z Y, LI W, WANG X, et al. Analysis of shroud cavity leakage in a radial turbine for optimal operation in compressed air energy storage system[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): doi: 10.1115/1.4047280. |
39 | LI W, WANG X, ZHANG X H, et al. Experimental and numerical investigations of closed radial inflow turbine with labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(10): doi: 10.1115/1.4039804. |
40 | 王星, 朱阳历, 张雪辉, 等. 轮背空腔-密封气对CAES向心涡轮变工况流动损失的影响[J]. 工程热物理学报, 2020, 41(1): 104-112. |
WANG X, ZHU Y L, ZHANG X H, et al. Effect of back cavity-seal gas on flow loss of CAES radial inflow turbine under variable operation conditions[J]. Journal of Engineering Thermophysics, 2020, 41(1): 104-112. | |
41 | 王星, 朱阳历, 李文, 等. NACA翼型叶顶对低展弦比向心涡轮影响特性[J]. 机械工程学报, 2020, 56(18): 172-179. |
WANG X, ZHU Y L, LI W, et al. Effects of blade tip profile based on NACA airfoil on aerodynamic performance of low aspect ratio radial-inflow turbine[J]. Journal of Mechanical Engineering, 2020, 56(18): 172-179. | |
42 | WANG X, LI W, ZHANG X H, et al. Coupling optimization of casing groove and blade profile for a radial turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(6): 1421-1434. |
43 | 王星, 李文, 朱阳历, 等. CAES轴流涡轮弯导叶优化设计与流动损失控制机理[J],储能科学与技术, 2021, 10(5): 1524-1535. |
WANG X, LI W, ZHU Y, et al. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine[J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. | |
44 | WANG X, LI W, ZHANG X H, et al. Efficiency improvement of a CAES low aspect ratio radial inflow turbine by NACA blade profile[J]. Renewable Energy, 2019, 138: 1214-1231. |
45 | WANG X, LI W, ZHANG X H, et al. Flow analysis and performance improvement of a radial inflow turbine with back cavity under variable operation condition of compressed air energy storage[J]. International Journal of Energy Research, 2019, 43(12): 6396-6408. |
46 | WANG X, ZHANG X H, ZUO Z T, et al. Effect of chamber roughness and local smoothing on performance of a CAES axial turbine[J]. Renewable Energy, 2021, 170: 500-516. |
47 | 刘祖煜, 王星, 李文, 等. 启动过程压缩空气储能向心涡轮三维流动特性研究[J/OL].推进技术, 2022, doi: 10.13675/j.cnki.tjjs.201016. |
48 | LI H, LI W, ZHANG X H, et al. Characteristic of a multistage reheating radial inflow in supercritical compressed air energy storage with variable operating parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(3): 397-412. |
49 | 刘栋, 李文, 李辉, 等. 多级向心涡轮可调导叶多级联调特性分析[J]. 储能科学与技术, 2017, 6(6): 1286-1294. |
LIU D, LI W, LI H, et al. Characteristic analysis of combined regulation of adjustable guide vanes of multistage radial inflow turbines[J]. Energy Storage Science and Technology, 2017, 6(6): 1286-1294. | |
50 | LIAO Z R, ZHONG H, XU C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2021.115132. |
51 | LI H Y, SHAO Z Y, ZHANG X H, et al. Preliminary design and performance analysis of the liquid turbine for supercritical compressed air energy storage systems[J]. Applied Thermal Engineering, 2022, 203: doi: 10.1016/j.applthermaleng.2021.117891. |
52 | ZHANG L, LIU L X, ZHANG C, et al. Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103197. |
53 | LIU Z X, KIM D, GUNDERSEN T. Optimal recovery of thermal energy in liquid air energy storage[J]. Energy, 2022, 240: doi: 10.1016/j.energy.2021.122810. |
54 | HEO J Y, PARK J H, LEE J I. Experimental investigation of tank stratification in liquid air energy storage (LAES) system[J]. Applied Thermal Engineering, 2022, 202: doi: 10.1016/j.applthermaleng.2021.117841. |
55 | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic Rankine cycle[J]. Energy, 2021, 227: doi: 10.1016/j.energy.2021.120411. |
56 | ALIRAHMI S M, BASHIRI MOUSAVI S, RAZMI A R, et al. A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units[J]. Energy Conversion and Management, 2021, 236: doi: 10.1016/j.enconman.2021.114053. |
57 | LI R X, ZHANG H R, CHEN H, et al. Hybrid techno-economic and environmental assessment of adiabatic compressed air energy storage system in China-Situation[J]. Applied Thermal Engineering, 2021, 186: doi: 10.1016/j.applthermaleng.2020.116443. |
58 | 王琴, 徐会金, 韩兴超, 等. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252, 1783. |
WANG Q, XU H J, HAN X C, et al. First principle calculation of thermochemical heat storage with MgO/Mg(OH)2 reaction[J]. CIESC Journal, 2021, 72(3): 1242-1252, 1783. | |
59 | 盛鹏, 徐丽, 赵广耀, 等. 新型混合硝酸熔盐的制备及热物性研究[J]. 储能科学与技术, 2021, 10(1): 170-176. |
SHENG P, XU L, ZHAO G Y, et al. Preparation and thermophysical properties of novel mixed nitrate molten salts[J]. Energy Storage Science and Technology, 2021, 10(1): 170-176. | |
60 | TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: doi: 10.1016/j.applthermaleng.2021.117104. |
61 | YAO Q Y, ZHAO C Y, ZHAO Y, et al. Topology optimization for heat transfer enhancement in latent heat storage[J]. International Journal of Thermal Sciences, 2021, 159: doi: 10.1016/j.ijthermalsci.2020.106578. |
62 | YU Q, LU Y W, ZHANG X P, et al. Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: doi: 10.1016/j.solmat.2021.111215. |
63 | LIN L, WANG L, LIN X P, et al. Experimental investigation on the distribution uniformity and pressure drop of perforated plate distributors for the innovative spray-type packed bed thermal storage[J]. Particuology, 2022, 61: 60-73. |
64 | DU P X, LIU C H, FANG B, et al. Experimental investigation on the stability and heat transfer enhancement of modified mircoencapsulated phase change materials and latent functionally thermal fluids[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102846. |
65 | WANG G, DANNEMAND M, XU C, et al. Thermal characteristics of a long-term heat storage unit with sodium acetate trihydrate[J]. Applied Thermal Engineering, 2021, 187: doi: 10.1016/j.applthermaleng.2021.116563. |
66 | LIU Y H, WANG L, PENG L, et al. Effect of additives on the cyclic thermal stability and thermal properties of sodium acetate trihydrate as a phase change material: An experimental study[J]. Solar Energy, 2022, 231: 473-483. |
67 | CHEN L, WANG L, WANG Y F, et al. Influence of phase change material volume shrinkage on the cyclic process of thermal energy storage: A visualization study[J]. Applied Thermal Engineering, 2022, 203: doi: 10.1016/j.applthermaleng.2021.117776. |
68 | FENG C L, E J Q, HAN W, et al. Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 144: doi: 10.1016/j.rser.2021.110954. |
69 | XU X H, SONG J, WU J F, et al. Preparation and thermal shock resistance of mullite and corundum co-bonded SiC ceramics for solar thermal storage[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2020, 35(1): 16-25. |
70 | 罗海华, 沈强, 林俊光, 等. 新型低熔点混合熔盐储热材料的开发[J]. 储能科学与技术, 2020, 9(6): 1755-1759. |
LUO H H, SHEN Q, LIN J G, et al. Development of new low melting point mixed molten salt heat storage material[J]. Energy Storage Science and Technology, 2020, 9(6): 1755-1759. | |
71 | GUO L L, LIU Q, YIN H Q, et al. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature[J]. Corrosion Science, 2020, 166: doi: 10.corsci.2021.108473. |
72 | 韩翔宇, 王亮, 葛志伟, 等. Co3O4/CoO氧化还原反应储/释热动力学特性[J]. 储能科学与技术, 2021, 10(5): 1701-1708. |
HAN X Y, WANG L, GE Z W, et al. The thermal storage and release kinetics of Co3O4/CoO redox reaction[J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. | |
73 | LIU X L, SHI H, MENG X G, et al. Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%[J]. Solar RRL, 2021, 5(8): doi: 10.1002/solr.202100185. |
74 | 贺明飞, 王志峰, 原郭丰, 等. 水体型太阳能跨季节储热技术简介[J]. 建筑节能(中英文), 2021, 49(10): 66-70. |
HE M F, WANG Z F, YUAN G F, et al. A technical introduction of water pit for long-term seasonal solar thermal energy storage[J]. Building Energy Efficiency, 2021, 49(10): 66-70. | |
75 | GUO F, ZHU X Y, ZHANG J Y, et al. Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied Energy, 2020, 264: doi: 10.1016/j.apenergy.2020.114763. |
76 | ZHU M H, HUANG J, SONG M J, et al. Thermal performance of a thin flat heat pipe with grooved porous structure[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/applthermaleng.2020.115215. |
77 | LIU Z C, QUAN Z H, ZHAO Y H, et al. Experimental research on the performance of ice thermal energy storage device based on micro heat pipe arrays[J]. Applied Thermal Engineering, 2021, 185: doi: 10.1016/applthermaleng.2020.116452. |
78 | CHEN M B, FU D K, SONG W J, et al. Performance of ice generation system using supercooled water with a directed evaporating method[J]. Energies, 2021, 14(21): doi: 10.3390/en14217021. |
79 | 秦宇枭, 刘培, 李政. 光热电厂储热系统动态建模及仿真[J]. 工程热物理学报, 2021, 42(12): 3125-3132. |
QIN Y X, LIU P, LI Z. Dynamic modeling and simulation of the thermal storage system in solar thermal power plant[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3125-3132. | |
80 | 郭枭, 邱云峰, 史志国, 等. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395. |
GUO X, QIU Y F, SHI Z G, et al. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395. | |
81 | 唐杰, 吕林, 许立雄, 等. 多时间尺度下计及光热—储热的主动配电网主辅联合优化调度[J]. 水电能源科学, 2021, 39(3): 190-194, 189. |
TANG J, LV L, XU L X, et al. Optimization of main and auxiliary joint dispatching of active distribution network considering solar thermal and thermal storage under multiple time scales[J]. Water Resources and Power, 2021, 39(3): 190-194, 189. | |
82 | 张淑婷, 陆海, 林小杰, 等. 考虑储能的工业园区综合能源系统日前优化调度[J]. 高电压技术, 2021, 47(1): 93-103. |
ZHANG S T, LU H, LIN X J, et al. Operation scheduling optimization of integrated-energy system in industrial park in consideration of energy storage[J]. High Voltage Engineering, 2021, 47(1): 93-103. | |
83 | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. |
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. | |
84 | 林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050. |
LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050. | |
85 | 徐德厚, 周学志, 徐玉杰, 等. 新型地下跨季节复合储热系统性能规律[J]. 储能科学与技术, 2021, 10(5): 1768-1776. |
XU D H, ZHOU X Z, XU Y J, et al. Performance law of a new composite seasonal underground thermal storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. | |
86 | 宋金鹏, 王金炜, 罗浩, 等. 碳纤维复合材料圆环拉伸力学性能研究[J]. 复合材料科学与工程, 2021(6): 65-71. |
SONG J P, WANG J W, LUO H, et al. Study on the performance of stretching mechanics of carbon fiber reinforced composite ring[J]. Composites Science and Engineering, 2021(6): 65-71. | |
87 | 戴兴建, 胡东旭, 张志来, 等. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
DAI X J, HU D X, ZHANG Z L, et al. Analysis and application of high strength alloy steel flywheel structure and material[J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. | |
88 | 孙玉坤, 陈家钰, 袁野. 飞轮储能用高速永磁同步电机损耗分析与优化[J]. 微电机, 2021, 54(8): 19-22, 79. |
SUN Y K, CHEN J Y, YUAN Y. Analysis and optimization of loss of high speed PMSM for flywheel energy storage[J]. Micromotors, 2021, 54(8): 19-22, 79. | |
89 | 贾翔宇, 汪军水, 徐旸, 等. 接触参数对储能飞轮转子碰摩行为的影响[J]. 储能科学与技术, 2021, 10(5): 1643-1649. |
JIA X Y, WANG J S, XU Y, et al. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters[J]. Energy Storage Science and Technology, 2021, 10(5): 1643-1649. | |
90 | 任正义, 黄同, 杨立平. 刚性飞轮转子-基础耦合系统的径向振动分析[J]. 机械设计与制造, 2021(3): 27-32, 38. |
REN Z Y, HUANG T, YANG L P. Radial vibration analysis of rigid flywheel rotor-foundation coupling system[J]. Machinery Design & Manufacture, 2021(3): 27-32, 38. | |
91 | XIANG B, WANG X, WONG W O. Process control of charging and discharging of magnetically suspended flywheel energy storage system[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103629. |
92 | 刘鸣, 王攀, 毕伟, 等. 磁悬浮飞轮中位移检测信号工频干扰分析及消除研究[J]. 电子器件, 2021, 44(3): 579-584. |
LIU M, WANG P, BI W, et al. Analysis and elimination of power frequency interference of displacement signal in magnetic suspension flywheel[J]. Chinese Journal of Electron Devices, 2021, 44(3): 579-584. | |
93 | 陈仲伟, 李达伟, 邹旭东, 等. 双馈电机驱动的飞轮储能系统稳定运行控制方法[J]. 电力科学与技术学报, 2021, 36(1): 177-184. |
CHEN Z W, LI D W, ZOU X D, et al. Research on stable operation control method of flywheel energy storage system driven by doubly fed machine[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 177-184. | |
94 | 沈舒楠, 朱熀秋. 外转子无铁心无轴承永磁同步电机参数优化设计[J]. 微电机, 2021, 54(5): 20-26. |
SHEN S N, ZHU H Q. Optimization design of outer rotor coreless bearingless permanent magnet synchronous motor[J]. Micromotors, 2021, 54(5): 20-26. | |
95 | 陈远强. 聚苯胺/木素复合膨胀剂的制备及其在铅酸电池中的应用[J]. 电子元件与材料, 2021, 40(2): 150-155. |
CHEN Y Q. Preparation of polyaniline/lignosulfonat composite expander and its applications in lead-acid batteries[J]. Electronic Components and Materials, 2021, 40(2): 150-155. | |
96 | 陈远强. 聚吡咯/炭黑复合材料制备及其在铅酸电池中的应用[J]. 工程塑料应用, 2021, 49(8): 1-7. |
CHEN Y Q. Preparation of polypyrrole/carbon black composites and their applications in lead-acid batteries[J]. Engineering Plastics Application, 2021, 49(8): 1-7. | |
97 | SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245. |
98 | LIU T, YU L, LIU J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries[J]. Nature Energy, 2021, 6(3): 277-286. |
99 | YUE J, ZHANG J, TONG Y, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime[J]. Nature Chemistry, 2021, 13(11): 1061-1069. |
100 | WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24697-2. |
101 | GAO J X, WU J, HAN S Y, et al. A novel solid electrolyte formed by NASICON-type Li3Zr2Si2PO12 and poly (vinylidene fluoride) for solid state batteries[J]. Functional Materials Letters, 2021, 14(3): doi: 10.1142/s1793604721400014. |
102 | CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592(7855): 551-557. |
103 | YAO Y, LEI J, SHI Y, et al. Assessment methods and performance metrics for redox flow batteries[J]. Nature Energy, 2021, 6(6): 582-588. |
104 | XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449. |
105 | YU X, SONG Y X, TANG A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230295. |
106 | XIE C X, LIU Y, LU W J, et al. Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage[J]. Energy & Environmental Science, 2019, 12(6): 1834-1839. |
107 | QIAO L, XIE C X, NAN M J, et al. Highly stable titanium-manganese single flow batteries for stationary energy storage[J]. Journal of Materials Chemistry A, 2021: 12606-12611. |
108 | LI T Y, XING F, LIU T, et al. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning[J]. Energy & Environmental Science, 2020, 13(11): 4353-4361. |
109 | LI T Y, LU W J, YUAN Z Z, et al. A data-driven and DFT assisted theoretic guide for membrane design in flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(25): 14545-14552. |
110 | CHEN Q R, LV Y G, YUAN Z Z, et al. Organic electrolytes for pH-neutral aqueous organic redox flow batteries[J]. Advanced Functional Materials, 2022, 32(9): doi: 10.1002/adfm.202108777. |
111 | ZHANG C K, LI X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: doi: 10.1016/j.coelec.2021.100836. |
112 | USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035. |
113 | HU Y S, LI Y Q. Unlocking sustainable Na-ion batteries into industry[J]. ACS Energy Letters, 2021, 6(11): 4115-4117. |
114 | DING F X, ZHAO C L, ZHOU D, et al. A novel Ni-rich O3 -Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries[J]. Energy Storage Materials, 2020, 30: 420-430. |
115 | RONG X H, HU E Y, LU Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3(2): 503-517. |
116 | QI Y R, TONG Z Z, ZHAO J M, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363. |
117 | BAUER A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702869. |
118 | ZHAO C L, WANG Q D, LU Y X, et al. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau[J]. Science Bulletin, 2018, 63(17): 1125-1129. |
119 | MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612. |
120 | WANG Y, YU X, XU S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications, 2013, 4: doi: 10.1038/ncomms3365. |
121 | RUDOLA A, RENNIE A J R, HEAP R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook[J]. Journal of Materials Chemistry A, 2021, 9(13): 8279-8302. |
122 | LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158. |
123 | HU Y S, LU Y X. The mystery of electrolyte concentration: From superhigh to ultralow[J]. ACS Energy Letters, 2020, 5(11): 3633-3636. |
124 | HUANG Y X, ZHAO L Z, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): doi: 10.1002/adma.201808393. |
125 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
126 | ZHOU Q, LI Y Q, TANG F, et al. Thermal stability of high power 26650-type cylindrical Na-ion batteries[J]. Chinese Physics Letters, 2021, 38(7): doi: 10.1088/0256-307x/38/7/076501. |
127 | ZHAO Z Y, XIA K Q, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743. |
128 | LIANG J, JIANG C Z, WU W. Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications[J]. Applied Physics Reviews, 2021, 8(2): doi: 10.1063/5.0048446. |
129 | WU Y C, YE J L, JIANG G P, et al. Electrochemical characterization of single layer graphene/electrolyte interface: Effect of solvent on the interfacial capacitance[J]. Angewandte Chemie International Edition, 2021, 60(24): 13317-13322. |
130 | WU Z T, LIU X C, SHANG T X, et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors[J]. Advanced Functional Materials, 2021, 31(41): doi: 10.1002/adfm.202102874. |
131 | AN Y B, LIU T Y, LI C, et al. A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(28): 15654-15664. |
132 | SUN X Z, WANG P L, AN Y B, et al. A fast and scalable pre-lithiation approach for practical large-capacity lithium-ion capacitors[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac38f7. |
133 | YIN Y, FANG Z, CHEN J W, et al. Hybrid Li-ion capacitor operated within an all-climate temperature range from -60 to +55 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45630-45638. |
134 | WANG K, JIANG K, CHUNG B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage[J]. Nature, 2014, 514(7522): 348-350. |
135 | LI H M, WANG K L, CHENG S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12830-12835. |
136 | LI H M, YIN H Y, WANG K L, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016, 6(14): doi: 10.1002/aenm.201600483. |
137 | LI H M, WANG K L, ZHOU H, et al. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J]. Energy Storage Materials, 2018, 14: 267-271. |
138 | YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021.230578. |
139 | DAI T, ZHAO Y, NING X H, et al. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J]. Journal of Power Sources, 2018, 381: 38-45. |
140 | ZHAO W, LI P, LIU Z, et al. High performance antimony-bismuth-tin positive electrode for liquid metal battery[J]. Chemistry of Materials, 2018, 30(24): 8739-8746. |
141 | LIU G A, XU C, LI H M, et al. State of charge and online model parameters co-estimation for liquid metal batteries[J]. Applied Energy, 2019, 250: 677-684. |
142 | WANG X, SONG Z X, YANG K, et al. State of charge estimation for lithium-bismuth liquid metal batteries[J]. Energies, 2019, 12(1): doi: 10.3390/en12010183. |
143 | 张娥, 徐成, 王晟, 等. 基于模糊逻辑控制器的液态金属电池组两级均衡系统[J]. 中国电机工程学报, 2020, 40(12): 4024-4033. |
ZHNAG E, XU C, WANG S, et al. Two-stage equalizing system of liquid metal batteries based on fuzzy logic controller[J]. Proceedings of the CSEE, 2020, 40(12): 4024-4033. | |
144 | PEI C Y, XIONG F Y, SHENG J Z, et al. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17060-17066. |
145 | ZHANG Z H, CUI Z L, QIAO L X, et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11): doi: 10.1002/aenm.201602055. |
146 | XU Y, ZHOU G M, ZHAO S Y, et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide[J]. Advanced Science, 2020, 7(2): doi: 10.1002/advs.201903603. |
147 | NG K L, AMRITHRAJ B, AZIMI G. Nonaqueous rechargeable aluminum batteries[J]. Joule, 2022, 6(1): 134-170. |
148 | SUN H B, WANG W, YU Z J, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chemical Communications, 2015, 51(59): 11892-11895. |
149 | TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives[J]. Chemical Reviews, 2021, 121(8): 4903-4961. |
150 | YANG C, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
151 | SUO L M, OH D, LIN Y X, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680. |
152 | ZHANG H, QIN B S, HAN J, et al. Aqueous/nonaqueous hybrid electrolyte for sodium-ion batteries[J]. ACS Energy Letters, 2018, 3(7): 1769-1770. |
153 | KANG Z, WU C L, DONG L B, et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371. |
154 | SUN K E K, HOANG T K A, DOAN T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9681-9687. |
155 | LI W, WANG K L, CHENG S J, et al. An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery[J]. Advanced Energy Materials, 2019, 9(27): doi: 10.1002/aenm.201900993. |
156 | LI W, MA Y S, LI P, et al. Electrochemically activated Cu2- xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries[J]. Advanced Energy Materials, 2021, 11(42): doi: 10.1002/aenm.202102607. |
157 | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: doi: 10.1016/j.applthermaleng.2021.116949. |
158 | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 A·h lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717. |
159 | LIU Y J, YANG K, ZHANG M J, et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire[J]. Journal of Energy Chemistry, 2022, 65: 532-540. |
160 | MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100142. |
161 | SU S S, LI W, LI Y S, et al. Multi-objective design optimization of battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2021, 196: doi: 10.1016/j.applthermaleng.2021.117235. |
162 | QIN P, LIAO M R, MEI W X, et al. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure[J]. Applied Thermal Engineering, 2021, 195: doi: 10.1016/j.applthermaleng.2021.117212. |
163 | YANG W, ZHOU F, CHEN X, et al. Performance analysis of axial air cooling system with shark-skin bionic structure containing phase change material[J]. Energy Conversion and Management, 2021, 250: doi: 10.1016/j.enconman.2021.114921. |
164 | ALIHOSSEINI A, SHAFAEE M. Experimental study and numerical simulation of a Lithium-ion battery thermal management system using a heat pipe[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102616. |
165 | JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: doi: 10.1016/j.energy.2021.121266. |
166 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
167 | 刘同宇. 大容量磷酸铁锂电池热失控行为监测预警研究[D]. 合肥: 中国科学技术大学, 2021. |
168 | HUANG Z H, LIU P J, DUAN Q L, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery[J]. Journal of Power Sources, 2021, 495: doi: 10.1016/j.jpowsour.2021.2306595. |
169 | QIN P, JIA Z Z, JIN K Q, et al. The experimental study on a novel integrated system with thermal management and rapid cooling for battery pack based on C6F12O spray cooling in a closed-loop[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230659. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[4] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[5] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[6] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[7] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[10] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[11] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[12] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[13] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[14] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[15] | 徐光福, 姜淼, 王万纯, 魏阳, 侯炜. 大型储能电池短路故障分析与保护策略[J]. 储能科学与技术, 2022, 11(7): 2222-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||