储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2564-2573.doi: 10.19799/j.cnki.2095-4239.2022.0117

• 电化学储能安全专刊 • 上一篇    下一篇

滴定-气相色谱技术在锂离子电池析锂定量检测中的应用

孙涛1(), 沈腾腾1,2, 刘昕2,4, 任东生2,3(), 刘金海4, 郑岳久1, 王鲁彦1,2, 卢兰光2, 欧阳明高2   

  1. 1.上海理工大学机械工程学院,上海 200093
    2.清华大学汽车安全与节能国家重点实验室
    3.清华大学核能与新能源技术研究院,北京 100084
    4.北京昇科能源科技 有限责任公司,北京 102101
  • 收稿日期:2022-03-07 修回日期:2022-03-21 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 任东生 E-mail:tao_sun531@usst.edu.cn;rends@tsinghua.edu.cn
  • 作者简介:孙涛(1974—),男,博士,副教授,主要研究方向为新能源汽车智能化与智能电池管理技术,E-mail:tao_sun531@usst.edu.cn
  • 基金资助:
    广东省重点领域研发计划(2020B0909030001);国家自然科学基金项目(52007099);中国博士后科学基金会面上项目(2020M680550)

Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries

Tao SUN1(), Tengteng SHEN1,2, Xin LIU2,4, Dongsheng REN2,3(), Jinhai LIU4, Yuejiu ZHENG1, Luyan WANG1,2, Languang LU2, Minggao OUYANG2   

  1. 1.College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University
    3.Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    4.Thinkenergy technology Co. , LTD. , Beijing 102101, China
  • Received:2022-03-07 Revised:2022-03-21 Online:2022-08-05 Published:2022-08-03
  • Contact: Dongsheng REN E-mail:tao_sun531@usst.edu.cn;rends@tsinghua.edu.cn

摘要:

锂离子电池在快速充电时会诱发负极析锂,造成严重的容量衰减和可能的安全问题。因此,准确识别电池内部的析锂量对于解决这些问题至关重要。本工作研究了滴定-气相色谱仪(titration gas chromatography,TGC)技术在石墨负极锂离子电池上定量检测析锂的有效性,实现了该方法在石墨负极析锂定量检测上的应用,最小检测极限为2.4 μmol金属锂。首先,利用已知浓度的标准气体对气相色谱仪(gas chromatography,GC)进行标定,确定了氢气浓度与GC检测到氢气信号面积之间的关系,进一步通过不同金属锂含量的样本对实验装置的可行性进行分析,证明了所开发的检测系统可以实现金属锂含量的定量检测,并确定了金属锂含量与TGC检测到氢气浓度的关系。在此基础上,使用核磁共振定量析锂检测技术,对TGC方法用于石墨负极析锂的定量检测的有效性和准确性进行了验证。最后,利用所开发的TGC检测系统,对两个不同析锂程度的1 Ah软包电池进行了析锂定量检测,与根据容量衰减估算的电池析锂的量相比,TGC检测的析锂量的误差小于7%,实现了电池析锂量的准确检测。

关键词: 锂离子电池, 析锂检测, 滴定-气相色谱技术, 核磁共振技术

Abstract:

Lithium plating is induced in lithium-ion batteries during fast charging, resulting in severe capacity fading and possible safety issues. Therefore, the accurate detection of lithium plating is vital for the safe operation of lithium-ion batteries. This study explored the application of titration gas chromatography (TGC) quantitatively detect lithium plating in lithium-ion batteries. The TGC can accurately detect the amount of plated lithium on the graphite anode, with a detection limit of 2.4 μmol Li. First, the relationship between H2 concentration and H2 signal area detected using TGC was calibrated using a standard gas of known concentration. The feasibility of the experimental device was further analyzed through tests on samples containing different lithium metal contents, which demonstrated that the developed detection system could quantitatively detect lithium plating, and the relationship between the amount of metallic lithium and the H2 concentration detected using TGC was determined. Moreover, the amount of plated lithium on the anode detected using the TGC method was consistent with the results measured by nuclear magnetic resonance, demonstrating the TGC method's high accuracy. Finally, the TGC method was used to detect the amount of plated lithium within two 1 Ah lithium-ion batteries after low-temperature charging. The results were consistent with the amount of plated lithium estimated from battery capacity loss, with errors less than 7%. This study demonstrates that the TGC method can be used to quantitatively detect lithium plating in lithium-ion batteries and that it has the advantages of low cost, feasibility, and scalability.

Key words: lithium-ion battery, lithium plating detection, titration gas chromatography, nuclear magnetic resonance

中图分类号: