储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1289-1304.doi: 10.19799/j.cnki.2095-4239.2022.0209
乔荣涵(), 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2022-04-18
修回日期:
2022-04-18
出版日期:
2022-05-05
发布日期:
2022-05-07
通讯作者:
黄学杰
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
乔荣涵(1998—),男,博士研究生,研究方向为锂离子电池,E-mail:qiaoronghan15@mails.ucas.ac.cn;
Ronghan QIAO(), Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-04-18
Revised:
2022-04-18
Online:
2022-05-05
Published:
2022-05-07
Contact:
Xuejie HUANG
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2022年2月1日至2022年3月31日上线的锂电池研究论文,共有3128篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料、镍酸锂、钴酸锂和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。负极材料的研究重点包括对硅颗粒的包覆,具有三维结构的硅/碳、硅/锡复合材料。金属锂负极的界面构筑及三维结构设计受到重点关注和研究。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括适应高电压正极材料及提升金属锂负极、石墨负极电池性能的添加剂与溶剂研究。针对固态电池,复合正极制备、双层电解质结构、锂界面枝晶及副反应抑制有多篇,其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了锂扩散、SEI形成、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及三元材料掺杂、电解液物化性质以及新型固态电解质搜寻,电池中电解液与正负极的界面以及固态电解质与Li的界面均受到重点关注。
中图分类号:
乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304.
Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304.
1 | GENG C X, RATHORE D, HEINO D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials[J]. Advanced Energy Materials, 2022, 12(6): doi: 10.1002/aenm. 202103067. |
2 | PARK K Y, ZHU Y Z, TORRES-CASTANEDO C G, et al. Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes[J]. Advanced Materials, 2022, 34(3): doi: 10.1002/adma.202106402. |
3 | HAO Q, DU F H, XU T, et al. Evaluation of Nb-doping on performance of LiNiO2 in wide temperature range[J]. Journal of Electroanalytical Chemistry, 2022, 907: doi: 10.1016/j.jelechem. 2022.116034. |
4 | ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48720-48729. |
5 | QIU Q Q, YUAN S S, BAO J, et al. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution[J]. Journal of Energy Chemistry, 2021, 61: 574-581. |
6 | ZHANG Y D, LI H, LIU J X, et al. Enhancing LiNiO2 cathode materials by concentration-gradient yttrium modification for rechargeable lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 63: 312-319. |
7 | FAN X M, HUANG Y D, WEI H X, et al. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability[J]. Advanced Functional Materials, 2022, 32(6): doi: 10.1002/adfm.202109421. |
8 | ZHANG L M, XIAO J C, WANG J R, et al. Active-site-specific structural engineering enabled ultrahigh rate performance of the NaLi3 Fe3(PO4)2(P2O7) cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11255-11263. |
9 | TERANISHI T, YAMANAKA R, MIMURA K I, et al. Ultrafast ion transport via dielectric nanocube interface[J]. Advanced Materials Interfaces, 2022, 9(4): doi: 10.1002/admi.202101682. |
10 | LUO Y, WANG Y, LI L S, et al. Identifying element-modulated reactivity and stability of the high-voltage spinel cathode materials via in situ time-resolved X-ray diffraction[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58467-58474. |
11 | AN Y L, TIAN Y, LIU C K, et al. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries[J]. ACS Nano, 2022, 16(3): 4560-4577. |
12 | WANG H Z, MAN H, YANG J H, et al. Self-adapting electrochemical grinding strategy for stable silicon anode[J]. Advanced Functional Materials, 2022, 32(6): doi: 10.1002/adfm.202109887. |
13 | FANG J B, CAO Y Q, CHANG S Z, et al. Dual-design of nanoporous to compact interface via atomic/molecular layer deposition enabling a long-life silicon anode[J]. Advanced Functional Materials, 2022, 32(7): doi: 10.1002/adfm.202109682. |
14 | LIU Z G, LU D Z, WANG W, et al. Integrating dually encapsulated Si architecture and dense structural engineering for ultrahigh volumetric and areal capacity of lithium storage[J]. ACS Nano, 2022, 16(3): 4642-4653. |
15 | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials, 2022: doi: 10.1002/adma.202109658. |
16 | CHEN M Y, DUAN P X, ZHONG Y J, et al. Constructing a sheet-stacked Si/C composite by recycling photovoltaic Si waste for Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2809-2816. |
17 | LU J J, LIU S L, LIU J H, et al. Millisecond conversion of photovoltaic silicon waste to binder-free high silicon content nanowires electrodes[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202102103. |
18 | DONG Z, DU W B, GU H T, et al. A unique structural highly compacted binder-free silicon-based anode with high electronic conductivity for high-performance lithium-ion batteries[J]. Small Structures, 2022, 3(2): doi: 10.1002/sstr.202100174. |
19 | LU W W, YANG H C, CHEN J, et al. Highly elastic wrinkled structures for stable and low volume-expansion lithium-metal anodes[J]. Science China Materials, 2021, 64(11): 2675-2682. |
20 | KIM S S, JUNG S M, SENTHIL C, et al. Unlocking rapid charging and extended lifetimes for Li-ion batteries using freestanding quantum conversion-type aerofilm anode[J]. ACS Nano, 2021, 15(11): 18437-18447. |
21 | LIANG N, XU H, FAN H M, et al. Cryogenic mechanical prelithiation reduces porosity and improves battery performance of an alloy foil anode[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13326-13334. |
22 | BAUER M, PFEIFER K, LUO X L, et al. Functionalization of graphite electrodes with aryl diazonium salts for lithium-ion batteries[J]. ChemElectroChem, 2022, 9(8): doi: 10.1002/celc. 202101434. |
23 | ZHOU J H, MA K N, LIAN X Y, et al. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries[J]. Small, 2022, 18(15): doi: 10.1002/smll. 202107460. |
24 | AI L F, CHEN Z Y, LI S P, et al. Stabilizing Li plating by a fluorinated hybrid protective layer[J]. ACS Applied Energy Materials, 2021, 4(12): 14407-14414. |
25 | BEICHEL W, SKROTZKI J, KLOSE P, et al. An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries[J]. Batteries & Supercaps, 2022, 5(2): doi: 10.1002/batt.202100347. |
26 | BANIYA A, GURUNG A, POKHAREL J, et al. Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer[J]. ACS Applied Energy Materials, 2022, 5(1): 648-657. |
27 | YANG L, TAO X Y, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063. |
28 | CHANDRA S, KIM Y, VIVONA D, et al. Thermally-driven reactivity of Li0.35La0.55TiO3 solid electrolyte with LiCoO2 cathode[J]. Journal of Materials Chemistry A, 2022, 10(7): 3485-3494. |
29 | ITO A, KIMURA T, SAKUDA A, et al. Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 2-7. |
30 | TAKAHASHI M, YANG S, YAMAMOTO K, et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis[J]. Solid State Ionics, 2021, 361: doi: 10.1016/j.ssi. 2021.115568. |
31 | KOÇ T, MARCHINI F, ROUSSE G, et al. In search of the best solid electrolyte-layered oxide pairing for assembling practical all-solid-state batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 13575-13585. |
32 | ZHOU L, TUFAIL M K, LIAO Y Z, et al. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li-SeS2 batteries[J]. Advanced Fiber Materials, 2022: 1-16. |
33 | DONG P P, JIAO Q, ZHANG Z C, et al. Controllable Li3PS4-Li4SnS4 solid electrolytes with affordable conductor and high conductivity for solid-state battery[J]. Journal of the American Ceramic Society, 2022, 105(5): 3252-3260. |
34 | XU H J, CAO G Q, SHEN Y L, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12282. |
35 | ALVAREZ-TIRADO M, GUZMÁN-GONZÁLEZ G, VAUTHIER S, et al. Designing boron-based single-ion gel polymer electrolytes for lithium batteries by photopolymerization[J]. Macromolecular Chemistry and Physics, 2022: doi: 10.1002/macp.202100407. |
36 | LIANG H P, ZARRABEITIA M, CHEN Z, et al. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200013. |
37 | STOLZ L, HOCHSTÄDT S, RÖSER S, et al. Single-ion versus dual-ion conducting electrolytes: The relevance of concentration polarization in solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11559-11566. |
38 | ZENG Q H, CHEN P P, LI Z F, et al. Application of a modified porphyrin in a polymer electrolyte with superior properties for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48569-48581. |
39 | DIDWAL P N, VERMA R, NGUYEN A G, et al. Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte[J]. Advanced Science, 2022: doi: 10.1002/advs.202105448. |
40 | LI Z, FU J, ZHENG S, et al. Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022: doi: 10.1002/smll.202200891. |
41 | LI M J, YANG J X, SHI Y Q, et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202107226. |
42 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
43 | YANG J X, LIU X, WANG Y A, et al. Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(39): doi: 10.1002/aenm.202101956. |
44 | LI H, WEN Z P, WU D Z, et al. Achieving a stable solid electrolyte interphase and enhanced thermal stability by a dual-functional electrolyte additive toward a high-loading LiNi 0.8 Mn0.1 Co0.1 O2/lithium pouch battery[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57142-57152. |
45 | LIU Y C, HONG L, JIANG R, et al. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57430-57441. |
46 | QIAO L, OTEO U, MARTINEZ-IBANEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J]. Nature Materials, 2022, 21(4):455-462. |
47 | AURBACH D, MARKEVICH E, SALITRA G. High energy density rechargeable batteries based on Li metal anodes. the role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents[J]. Journal of the American Chemical Society, 2021, 143(50): 21161-21176. |
48 | JOHNSON N M, YANG Z Z, BLOOM I, et al. Enabling high-temperature and high-voltage lithium-ion battery performance through a novel cathode surface-targeted additive[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59538-59545. |
49 | WANG Z C, ZHANG H Y, XU J J, et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202112598. |
50 | WANG Y, ZHANG Y J, DONG S Y, et al. An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202103360. |
51 | YU Z, RUDNICKI P E, ZHANG Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106. |
52 | PIAO Z H, XIAO P T, LUO R P, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries[J]. Advanced Materials, 2022, 34(8): doi: 10.1002/adma.202108400. |
53 | ZHANG Y, WU Y, LI H, et al. A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries[J]. Nature Communications, 2022, 13(1): 1297. |
54 | KIM M S, ZHANG Z, RUDNICKI P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries [J]. Nature Materials, 2022, 21 (4): 445-454. |
55 | JIANG H Z, HAN Y, WANG H, et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. Journal of Alloys and Compounds, 2021, 874: doi: 10.1016/j.jallcom.2021.159763. |
56 | NAGATA H, AKIMOTO J. Room-temperature operation of lithium sulfide positive and silicon negative composite electrodes employing oxide solid electrolytes for all-solid-state battery[J]. Electrochemistry, 2022, 90(1): doi: 10.5796/electrochemistry.21-00112. |
57 | PARK S W, CHOI H J, YOO Y, et al. Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer[J]. Advanced Functional Materials, 2022, 32(5): doi: 10.1 002/adfm.202108203. |
58 | CHENG Z, PAN H, LI F, et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy [J]. Nature Communications, 2022, 13: 125. |
59 | SAHORE R, YANG G, CHEN X C, et al. A bilayer electrolyte design to enable high-areal-capacity composite cathodes in polymer electrolytes based solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 1409-1413. |
60 | TAO J M, WANG D Y, YANG Y M, et al. Swallowing lithium dendrites in all-solid-state battery by lithiation with silicon nanoparticles[J]. Advanced Science, 2022, 9(4): doi: 10.1002/advs.202103786. |
61 | JIAO X X, WANG J, GAO G X, et al. Stable Li-metal batteries enabled by in situ gelation of an electrolyte and in-built fluorinated solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60054-60062. |
62 | CHANG C Y, YAO Y, LI R R, et al. Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes[J]. Nano Energy, 2022, 93: doi: 10. 1016/j.nanoen.2021.106871. |
63 | WANG J L, ZHANG Z, YING H J, et al. An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency[J]. Journal of Materiomics, 2022, 8(2): 257-265. |
64 | KIM C, KIM J, PARK J, et al. Ion-conducting channel implanted anode matrix for all-solid-state batteries with high rate capability and stable anode/solid electrolyte interface[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202102045. |
65 | WANG T R, DUAN J, ZHANG B, et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries[J]. Energy & Environmental Science, 2022, 15(3): 1325-1333. |
66 | CHEN Y, YAO L, CHEN X D, et al. Double-faced bond coupling to induce an ultrastable lithium/Li6PS5Cl interface for high-performance all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11950-11961. |
67 | CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Argyrodite solid electrolyte-coated graphite as anode material for all-solid-state batteries[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 8-15. |
68 | HAKARI T, FUJITA Y, DEGUCHI M, et al. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Advanced Functional Materials, 2022, 32(5): doi: 10.1002/adfm.202106174. |
69 | YEN Y J, CHUNG S H. A Li2S-based catholyte/solid-state-electrolyte composite for electrochemically stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58712-58722. |
70 | LEI J, FAN X X, LIU T, et al. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries [J]. Nature Communications, 2022, 13: 202. |
71 | SUN R, BAI Y, BAI Z, et al. Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(12): doi: 10.1002/aenm. 202102739. |
72 | WANG J, YANG S H, XU Z J, et al. Addressing the prominent Li+ intercalation process of metal sulfide catalyst in Li-S batteries[J]. Advanced Materials Interfaces, 2022, 9(6): doi: 10.1002/admi. 202101699. |
73 | THRIPURANTHAKA M, CHATURVEDI V, DWIVEDI P K, et al. 3D X-ray microtomography investigations on the bimodal porosity and high sulfur impregnation in 3D carbon foam for Li-S battery application[J]. Journal of Physics: Energy, 2022, 4(1): doi: 10. 1088/2515-7655/ac4c34. |
74 | AL-TAHAN M A, DONG Y T, SHRSHR A E, et al. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator[J]. Journal of Colloid and Interface Science, 2022, 609: 235-248. |
75 | DONG F, PENG C X, XU H Y, et al. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics[J]. ACS Nano, 2021, 15(12): 20287-20299. |
76 | SHI M J, LIU Z, ZHANG S, et al. A Mott-Schottky heterogeneous layer for Li-S batteries: Enabling both high stability and commercial-sulfur utilization[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103657. |
77 | KUMBERG J, BAUER W, SCHMATZ J, et al. Reduced drying time of anodes for lithium-ion batteries through simultaneous multilayer coating[J]. Energy Technology, 2021, 9(10): doi: 10. 1002/ente.202100367. |
78 | NUR K, ROITZHEIM C, FINSTERBUSCH M, et al. Cold sintered LiMn2O4 for high-rate capability electrodes[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5348. |
79 | SUN Q, LI J, HAO C Y, et al. Focusing on the subsequent coulombic efficiencies of SiOx: Initial high-temperature charge after over-capacity prelithiation for high-efficiency SiOx-based full-cell battery[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14284-14292. |
80 | ZACHMAN M J, YANG Z, DU Y, et al. Robust atomic-resolution imaging of lithium in battery materials by center-of-mass scanning transmission electron microscopy[J]. ACS Nano, 2022: doi: 10. 1021/acsnano.1c09374. |
81 | UXA D, SCHMIDT H. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries[J]. Zeitschrift Für Physikalische Chemie, 2021: doi: 10.1515/zpch-2021-3098. |
82 | CAVE E A, OLSON J Z, SCHLENKER C W. Ion-pairing dynamics revealed by kinetically resolved in situ FTIR spectroelectrochemistry during lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48546-48554. |
83 | LUO Y T, BAI Y, MISTRY A, et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation[J]. Nature Materials, 2022, 21(2): 217-227. |
84 | CHEN Y Y, HUANG H Y, LIU L L, et al. Diffusion enhancement to stabilize solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202101774. |
85 | LIU Y Y, XU X Y, KAPITANOVA O O, et al. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes[J]. Advanced Energy Materials, 2022, 12(9): doi: 10.1002/aenm. 202103589. |
86 | YUE X Y, YAO Y X, ZHANG J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries[J]. Advanced Materials, 2022, 34(15): doi: 10.1002/adma.202110337. |
87 | LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4051-4060. |
88 | TSUKASAKI H, IGARASHI K, WAKUI A, et al. In situ observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems[J]. Microscopy, 2021, 70(6): 519-525. |
89 | JIANG Y, NIU Z Q, OFFER G, et al. Insights into the role of silicon and graphite in the electrochemical performance of silicon/graphite blended electrodes with a multi-material porous electrode model[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5481. |
90 | SHEN Y B, YAO X J, WANG S H, et al. Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58871-58884. |
91 | AZEEZ F, REFAIE A. Integration of semi-empirical and artificial neural network (ANN) for modeling lithium-ion electrolyte systems dynamic viscosity[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4840. |
92 | CUI X L, ZHANG J J, WANG J, et al. Antioxidation mechanism of highly concentrated electrolytes at high voltage[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59580-59590. |
93 | ZHANG B K, ZHONG J J, PAN F, et al. Potential solid-state electrolytes with good balance between ionic conductivity and electrochemical stability: Li5- xM1- xMx'O4 (M = Al and Ga and M' = Si and Ge)[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61296-61304. |
94 | LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Letters, 2022, 22(6): 2461-2469. |
95 | LV L Z, WANG Y, HUANG W B, et al. The effect of cathode type on the electrochemical performance of Si-based full cells[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230855. |
96 | SHI X T, ZHENG T L, XIONG J W, et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57107-57117. |
97 | SHIN W, MANTHIRAM A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022, 61(13): doi: 10.1002/anie.202115909. |
98 | ZHANG X H, CUI Z H, MANTHIRAM A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103611. |
99 | HUO H Y, HUANG K, LUO W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging[J]. ACS Energy Letters, 2022, 7(2): 650-658. |
100 | SUN H M, LIU Q N, CHEN J Z, et al. In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries[J]. ACS Nano, 2021, 15(12): 19070-19079. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[10] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[11] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[12] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[13] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[14] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||