1 |
徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45(16): 2-13.
|
|
XU X Y, WANG H, YAN Z, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45(16): 2-13.
|
2 |
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
|
|
ZHUO Z Y, ZHANG N, XIE X R, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
|
3 |
ZHANG Z J, LI J, CHEN J B, et al. Research on dead-time compensation of inverter based on fuzzy adaptive PI control[C]//2019 Chinese Automation Congress (CAC). November 22-24, 2019, Hangzhou, China. IEEE, 2019: 5664-5668.
|
4 |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
|
|
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
|
5 |
TAN G D, XU C, WU F Z, et al. Research on primary frequency regulation of wind turbine based on new nonlinear droop control[C]//2020 4th International Conference on HVDC (HVDC). November 6-9, 2020, Xi'an, China. IEEE, 2020: 170-174.
|
6 |
王婧, 高洪波, 胡道中, 等. 锂离子电容器直流内阻测试方法研究[J]. 储能科学与技术, 2018, 7(6): 1242-1247.
|
|
WANG J, GAO H B, HU D Z, et al. Study on the measurement methods for the DC internal resistance of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2018, 7(6): 1242-1247.
|
7 |
沈迎, 黄策, 胡锡东, 等. 锂离子电容器参与火电机组调频研究[J]. 电气技术, 2021, 22(10): 98-103.
|
|
SHEN Y, HUANG C, HU X D, et al. Research on frequency regulation of thermal power unit with lithium-ion capacitor[J]. Electrical Engineering, 2021, 22(10): 98-103.
|
8 |
SUN X Z, ZHANG X, WANG K, et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(8): 2501-2506.
|
9 |
CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213: 296-303.
|
10 |
YUAN Q Q, XU X M, ZHAO L, et al. Multitime scale analysis of surface temperature distribution of lithium-ion batteries in quantity-quality change under local high-temperature heat source[J]. Journal of Energy Engineering, 2020, 146(6): doi: 10.1061/(ASCE)EY.1943-7897.0000706.
|
11 |
WANG P, YANG L, WANG H, et al. Temperature estimation from current and voltage measurements in lithium-ion battery systems[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102133.
|
12 |
LIU Y F, LI J Q, ZHANG G, et al. State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning[J]. IEEE Access, 9: 34177-34187.
|
13 |
ROMERO J, AZARIAN M H, PECHT M. Reliability analysis of multilayer polymer aluminum electrolytic capacitors[J]. Microelectronics Reliability, 2020, 112: 10.1016/j.microrel.2020.113725.
|
14 |
SOLTANI M, RONSMANS J, VAN MIERLO J. Cycle life and calendar life model for lithium-ion capacitor technology in a wide temperature range[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101659.
|
15 |
LI X Y, LONG T, TIAN J D, et al. Multi-state joint estimation for a lithium-ion hybrid capacitor over a wide temperature range[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228677.
|
16 |
王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1261-1270.
|
|
WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270.
|
17 |
赵顺凯. TPS法测量导热系数的研究[D]. 杭州: 中国计量大学, 2019.
|
|
ZHAO S K. Study on measurement of thermal conductivity by TPS method[D]. Hangzhou: China Jiliang University, 2019.
|
18 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
19 |
WANG K, ZHANG L, JI B C, et al. The thermal analysis on the stackable supercapacitor[J]. Energy, 2013, 59: 440-444.
|