1 |
杨茜. 2022年我国汽车市场趋势分析[J]. 汽车纵横, 2022(2): 54-56.
|
|
YANG X. Analysis of my country's auto market trends in 2022[J]. Auto Review, 2022(2): 54-56.
|
2 |
FRANZÒ S, FRATTINI F, LATILLA V M, et al. The diffusion of electric vehicles in Italy as a means to tackle main environmental issues[C]//2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte Carlo, Monaco. IEEE, : 1-7.
|
3 |
WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212.
|
4 |
RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776.
|
5 |
ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217.
|
6 |
MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574.
|
7 |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
|
8 |
ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): A848-A859.
|
9 |
COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): A587-A593.
|
10 |
WANG S R, LU L L, LIU X J. A simulation on safety of LiFePO4/C cell using electrochemical-thermal coupling model[J]. Journal of Power Sources, 2013, 244: 101-108.
|
11 |
陈芬放. 高能量密度NCA正极锂离子电池老化过程产热特性研究[D]. 杭州: 浙江大学, 2021.
|
|
CHEN F F. Study on the heat generation characteristics of high-specific-energy lithium ion batteries with NCA cathode during aging[D]. Hangzhou: Zhejiang University, 2021.
|
12 |
JIN X. Aging-Aware optimal charging strategy for lithium-ion batteries: Considering aging status and electro-thermal-aging dynamics[J]. Electrochimica Acta, 2022, 407: doi:10.1016/j.electacta.2021.139651.
|
13 |
XIONG R, PAN Y, SHEN W X, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: doi:10.1016/j.rser.2020.110048.
|
14 |
REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100034.
|
15 |
YUAN W, LIANG D, CHU Y Y, et al. Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: doi: 10.1016/j.jlp.2022.104830.
|
16 |
ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources, 2018, 399: 264-273.
|
17 |
YANG M J, YE Y J, YANG A J, et al. Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104691.
|
18 |
LIU J L, WANG Z R, BAI J L, et al. Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery[J]. Applied Thermal Engineering, 2022, 212: doi: 10.1016/j.applthermaleng.2022.118565.
|
19 |
黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019.
|
|
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019.
|
20 |
SAITO Y. Thermal behaviors of lithium-ion batteries during high-rate pulse cycling[J]. Journal of Power Sources, 2005, 146(1/2): 770-774.
|
21 |
庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法[J]. 物理学报, 2017, 66(23): 312-322.
|
|
PANG H. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Physica Sinica, 2017, 66(23): 312-322.
|
22 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
23 |
陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 武汉: 华中科技大学, 2017.
|
|
TAO H. Experimental and simulation study on thermal runaway of lithium-ion battery[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
24 |
张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756.
|
|
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750, 756.
|
25 |
马勇, 李晓涵, 孙磊, 等. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611.
|
|
MA Y, LI X H, SUN L, et al. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model[J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611.
|
26 |
王远. 锂离子电池用聚乙烯隔膜改性及其性能研究[D]. 南昌: 南昌大学, 2020.
|
|
WANG Y. Study on the properties of the modified polyethylene membrane for lithium-ion battery[D]. Nanchang: Nanchang University, 2020.
|