| 1 |
ATTIDEKOU P S, WANG C, ARMSTRONG M, et al. A new time constant approach to online capacity monitoring and lifetime prediction of lithium ion batteries for electric vehicles (EV)[J]. Journal of the Electrochemical Society, 2017, 164(9): doi: 10.1149/2.0101709jes.
|
| 2 |
SASAKI T, UKYO Y, NOVÁK P. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6): 569-575.
|
| 3 |
ZHANG L, ZHANG Z C, AMINE K. Redox shuttles for overcharge protection of lithium-ion batteries[C]//Batteries and Energy Technology(General)-221ST ECS Meeting. 2013: 57-66.
|
| 4 |
朱基亮, 杜翀, 何亮明, 等. 锂离子电池的热稳定性和大电流充放电稳定性研究[J]. 四川大学学报(工程科学版), 2011, 43(4): 205-208.
|
|
ZHU J L, DU C, HE L M, et al. Study on thermal and large charge-discharge stability of Li-ion batteries[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(4): 205-208.
|
| 5 |
ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
|
| 6 |
KONG D P, WEN R X, PING P, et al. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in over-charge conditions[J]. International Journal of Energy Research, 2019, 43(1): 552-567.
|
| 7 |
LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227263.
|
| 8 |
张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397.
|
|
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397.
|
| 9 |
杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
|
|
YANG S J, LUO B Y, WANG J, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
|
| 10 |
DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343.
|
| 11 |
DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications[J]. Journal of the Electrochemical Society, 2012, 160(1): doi: 10.1149/2.063301jes.
|
| 12 |
ZHENG H Y, QU Q T, ZHU G B, et al. Quantitative characterization of the surface evolution for LiNi0.5Co0.2Mn0.3O2/graphite cell during long-term cycling[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12445-12452.
|
| 13 |
AURBACH D, MARKOVSKY B, WEISSMAN I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1/2): 67-86.
|
| 14 |
MALLARAPU A, KIM J, CARNEY K, et al. Modeling extreme deformations in lithium ion batteries[J]. eTransportation, 2020, 4: doi: 10.1016/j.etran.2020.100065.
|
| 15 |
MEI W X, ZHANG L, SUN J H, et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy Storage Materials, 2020, 32: 91-104.
|
| 16 |
WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
|
| 17 |
FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
|
| 18 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
| 19 |
FENG X N, ZHENG S Q, HE X M, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126.
|
| 20 |
RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. experimental[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077.
|
| 21 |
CHEN Z H, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite[J]. Energy & Environmental Science, 2011, 4(10): 4023.
|
| 22 |
WANG Q S, SUN J H, YAO X L, et al. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(2): doi: 10.1149/1.2139955.
|
| 23 |
BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.
|
| 24 |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
|
| 25 |
JO M, NOH M, OH P, et al. A new high power LiNi0.81Co0.1Al0.09O2cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(13): doi: 10.1002/aenm.201301583.
|
| 26 |
WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588.
|
| 27 |
RÖDER P, BABA N, FRIEDRICH K A, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157.
|
| 28 |
WANG G W, ZHANG S, LI M, et al. Deformation and failure properties of high-Ni lithium-ion battery under axial loads[J]. Materials (Basel, Switzerland), 2021, 14(24): 7844.
|
| 29 |
PASTOR-FERNÁNDEZ C, DHAMMIKA WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique[C]//2016 IEEE Transportation Electrification Conference and Expo. Dearborn, MI. IEEE, 2016: 1-6.
|
| 30 |
LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): doi: 10.1149/2.090404jes.
|
| 31 |
BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|
| 32 |
葛昊, 李宁, 戴长松. LiCoXMnYNi1- X- YO2电极材料的研究进展[J]. 电池工业, 2008, 13(2): 120-122, 131.
|
|
GE H, LI N, DAI C S. Research progress on LiCoXMnYNi1- X- YO2 electrode material[J]. Chinese Battery Industry, 2008, 13(2): 120-122, 131.
|