1 |
杨红斌. 用于新能源汽车的锂离子动力电池研究进展[J]. 世界科技研究与发展, 2020, 42(1): 79-86.
|
|
YANG H B. Competition situation, technology trends and enlightenment of lithium-ion power batteries in the development of new energy vehicles[J]. World Sci-Tech R & D, 2020, 42(1): 79-86.
|
2 |
华旸, 周思达, 何瑢, 等. 车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84.
|
|
HUA Y, ZHOU S D, HE R, et al. Review on lithium-ion battery equilibrium technology applied for EVs[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84.
|
3 |
徐爱琴, 赵久志, 秦李伟, 等. 一种基于工况循环的磷酸铁锂电池寿命及功率分析[J]. 农业装备与车辆工程, 2017, 55(7): 92-96.
|
|
XU A Q, ZHAO J Z, QIN L W, et al. Research on effect of bus cycle to the performance of battery[J]. Agricultural Equipment & Vehicle Engineering, 2017, 55(7): 92-96.
|
4 |
JAVANI N, DINCER I, NATERER G F, et al. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells[J]. Applied Thermal Engineering, 2014, 73(1): 307-316.
|
5 |
LEE J L, CHEMISTRUCK A, PLETT G L. One-dimensional physics-based reduced-order model of lithium-ion dynamics[J]. Journal of Power Sources, 2012, 220: 430-448.
|
6 |
TANG Y W, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the Electrochemical Society, 2014, 161(8): E3021-E3027.
|
7 |
张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130.
|
|
ZHANG Z C, ZHENG L L, DU G C, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130.
|
8 |
MASTALI M, FOREMAN E, MODJTAHEDI A, et al. Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129: 218-230.
|
9 |
CHEN N, ZHANG P, DAI J Y, et al. Estimating the state-of-charge of lithium-ion battery using an H-infinity observer based on electrochemical impedance model[J]. IEEE Access, 2020, 8: 26872-26884.
|
10 |
GUO M, WHITE R E. A distributed thermal model for a Li-ion electrode plate pair[J]. Journal of Power Sources, 2013, 221: 334-344.
|
11 |
XU M, ZHANG Z Q, WANG X, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317.
|
12 |
奚冬. 锂离子电池动态产热模型及电池模组温度不均匀性演化机理研究[D]. 重庆: 重庆大学, 2020.
|
|
XI D. Study on dynamic heat generation model of lithium-ion battery and evolution mechanism of temperature inhomogeneity of battery module[D]. Chongqing: Chongqing University, 2020.
|
13 |
LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses forlithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255(6):130-143.
|
14 |
MASTALI M, SAMADANI E, FARHAD S, et al. Three-dimensional multi-particle electrochemical model of LiFePO4 cells based on a resistor network methodology[J]. Electrochimica Acta, 2016, 190: 574-587.
|
15 |
史玉军. 车用锂离子电池热分析[D]. 昆明: 昆明理工大学, 2017.
|
|
SHI Y J. Thermal analysis of lithium ion battery for vehicle[D]. Kunming: Kunming University of Science and Technology, 2017.
|
16 |
PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1239-1251.
|
17 |
李静静, 陈萌. 锂动力电池电化学-热特性建模及仿真研究[J]. 森林工程, 2020, 36(6): 87-94.
|
|
LI J J, CHEN M. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering, 2020, 36(6): 87-94.
|
18 |
梁金华. 纯电动车用磷酸铁锂电池组散热研究[D]. 北京: 清华大学, 2012.
|
|
LIANG J H. Research on the heat dissipation of pure EV's battery pack[D]. Beijing: Tsinghua University, 2012.
|