1 |
刘杭鑫, 陈现涛, 孙强, 等. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815.
|
|
LIU H X, CHEN X T, SUN Q, et al. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment[J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815.
|
2 |
王苏杭, 李建林, 李雅欣, 等. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542.
|
|
WANG S H, LI J L, LI Y X, et al. Research on charging strategy of lithium-ion battery system at low temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542.
|
3 |
王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574.
|
|
WANG J, RUAN L, QIU Y L. Research progress on rapid heating methods for lithium-ion battery in low-temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574.
|
4 |
雷治国, 张承宁, 雷学国, 等. 电传动车辆用锂离子电池组低温加热方法研究[J]. 电源学报, 2016, 14(1): 102-108.
|
|
LEI Z G, ZHANG C N, LEI X G, et al. Study on heating method of lithium-ion battery used in electric vehicle[J]. Journal of Power Supply, 2016, 14(1): 102-108.
|
5 |
HU X S, ZHENG Y S, HOWEY D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: doi: 10.1016/j.pecs.2019.100806.
|
6 |
FAN R J, ZHANG C Z, WANG Y, et al. Numerical study on the effects of battery heating in cold climate[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100969.
|
7 |
WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.
|
8 |
JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674.
|
9 |
YANG H, FEY E O, TRIMM B D, et al. Effects of Pulse Plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908.
|
10 |
ZUÑIGA M, JAGUEMONT J, BOULON L, et al. Heating lithium-ion batteries with bidirectional current pulses[C]//2015 IEEE Vehicle Power and Propulsion Conference. Montreal, QC, Canada. IEEE, 2015: 1-6.
|
11 |
徐智慧, 阮海军, 姜久春, 等. 温度自适应的锂离子电池低温自加热方法[J]. 电源技术, 2019, 43(12): 1989-1992, 2043.
|
|
XU Z H, RUAN H J, JIANG J C, et al. Temperature-adaptive internal heating strategy for lithium ion battery at low temperature[J]. Chinese Journal of Power Sources, 2019, 43(12): 1989-1992, 2043.
|
12 |
QIN Y D, DU J Y, LU L G, et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life[J]. Applied Energy, 2020, 280: doi: 10.1016/j.apenergy.2020.115957.
|
13 |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
14 |
DOYLE M, NEWMAN J. Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27: 846-856.
|
15 |
黄伟, 文华, 李亚胜. 三元软包锂离子动力电池热特性测量及应用[J]. 储能科学与技术, 2019, 8(2): 284-291.
|
|
HUANG W, WEN H, LI Y S. Measurements and application of thermal characteristics of soft-packed NCM lithium-ion power battery[J]. Energy Storage Science and Technology, 2019, 8(2): 284-291.
|
16 |
WU S J, XIONG R, LI H L, et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101059101059.
|
17 |
ZHU C, LI X H, SONG L J, et al. Development of a theoretically based thermal model for lithium ion battery pack[J]. Journal of Power Sources, 2013, 223: 155-164.
|