1 |
HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86.
|
2 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
3 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
4 |
LIU L, LIN C J, FAN B, et al. A new method to determine the heating power of ternary cylindrical lithium ion batteries with highly repeatable thermal runaway test characteristics[J]. Journal of Power Sources, 2020, 472: doi:10.1016/j.jpowsour.2020.228503.
|
5 |
OHZUKU T, BRODD R J. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. Journal of Power Sources, 2007, 174(2): 449-456.
|
6 |
SHAO Y J, HUANG B, LIU Q B, et al. Preparation and modification of Ni-Co-Mn ternary cathode materials[J]. Progress in Chemistry, 2018, 30(4): 410-419.
|
7 |
朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(01): 201-210.
|
|
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(01): 201-210.
|
8 |
王春晓. 低温高倍率充放电下锂电池内部热应变特性研究[D]. 广汉: 中国民用航空飞行学院, 2020.
|
|
WANG C X. Study on internal thermal strain characteristics of lithium batteries at high C rates under low temperature[D]. Guanghan: Civil Aviation Flight University of China, 2020.
|
9 |
BLOOM I, WALKER L K, BASCO J K, et al. Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC[J]. Journal of Power Sources, 2010, 195(3): 877-882.
|
10 |
ZHANG Y P, WU L L, ZHAO J B, et al. A facile precursor-separated method to synthesize nano-crystalline LiFePO4/C cathode materials[J]. Journal of Electroanalytical Chemistry, 2014, 719: 1-6.
|
11 |
GANTENBEIN S, SCHÖNLEBER M, WEISS M, et al. Capacity fade in lithium-ion batteries and cyclic aging over various state-of-charge ranges[J]. Sustainability, 2019, 11(23): 6697.
|
12 |
GHOLAMI J, BARZOKI M F. Electrochemical modeling and parameter sensitivity of lithium-ion battery at low temperature[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103189.
|
13 |
刘霞. 锂电池与超级电容测试台架建立与非线性建模[D]. 武汉: 武汉理工大学, 2019.
|
|
LIU X. Test bench establishing and nonlinear modeling of lithium-ion battery and supercapacitor[D]. Wuhan: Wuhan University of Technology, 2019.
|
14 |
LI B, XIA D G. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201701054
|
15 |
WANG X X, LIU S R, ZHANG Y J, et al. A review of the power battery thermal management system with different cooling, heating and coupling system[J]. Energies, 2022, 15(6): 1963.
|
16 |
LINDEN D, REDDY T B. Handbook of batteries[M]. New York: McGraw-Hill, 2007.
|
17 |
LUX S F, SCHMUCK M, APPETECCHI G B, et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes:II. Evaluation of specific capacity and cycling efficiency and stability at room temperature[J]. Journal of Power Sources, 2009, 192(2): 606-611.
|
18 |
WANG X X, ZHANG Y J, ZHU Y, et al. Effect of different hot-pressing pressure and temperature on the performance of titanium mesh-based MEA for DMFC[J]. Membranes, 2022, 12(4): 431.
|