1 |
ATTIDEKOU P S, WANG C, ARMSTRONG M, et al. A new time constant approach to online capacity monitoring and lifetime prediction of lithium ion batteries for electric vehicles (EV)[J]. Journal of the Electrochemical Society, 2017, 164(9): A1792-A1801.
|
2 |
TSUYOSHI S, YOSHIO U, PETR N. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6): 569-575.
|
3 |
KHALIL A, ZHANG L, ZHANG Z C. Redox shuttles for overcharge protection of lithium-ion batteries: US 20060199080[P]. 2006-09-07.
|
4 |
HU X S, ZOU C F, ZHANG C P. Technological developments in batteries[J]. IEEE Power Energy Magazine, 2017, 15(5): 20-31.
|
5 |
LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review[J]. Energy Storage Materials, 2020, 24: 85-112.
|
6 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivintype cathodes[J]. RSC Advances, 2014, 7: 3633-3642.
|
7 |
ZHONG G B, MAO B B, WANG C, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter[J]. 2019, 135(5): doi: 10.1007/s10973-018-7599-7.
|
8 |
MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi: 10.1016/j.ijheatmasstransfer.2019.119178.
|
9 |
陈吉清, 刘蒙蒙, 周云郊, 等. 不同滥用条件下车用锂电池安全性实验研究[J]. 汽车工程, 2020(1): 66-73.
|
|
CHEN J Q, LIU M M, ZHOU Y J, et al. Experimental research on the safety of lithium batteries for vehicles under different abuse conditions[J] .Chinese Automotive Engineering, 2020(1): 66-73.
|
10 |
PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89.
|
11 |
吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
WU T Q. Experimental study on heat generation and thermally induced runaway characteristics of lithium-ion batteries[D]. Hefei: University of Science and Technology of China, 2018.
|
12 |
ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100031.
|
13 |
黄文才, 胡广地, 邓宇翔, 等. 锂离子电池的高温热失控模拟[J]. 电池, 2019, 49(3): 204-207.
|
|
HUANG W C, HU G D, DENG Y X, et al. Simulation of high temperature thermal runaway of lithium ion batteries[J]. Battery Bimonthly, 2019, 49(3): 204-207.
|
14 |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: doi: 10.1016/j.jpowsour.2012.02.038.
|
15 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10(2): 46-67.
|
16 |
RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electroiyt[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077.
|
17 |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
|
18 |
张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27.
|
|
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithium-ion batteries[J] .Chinese Journal of Mechanical Engineering, 2019, 55(20): 17-27.
|
19 |
YANG H, ZHUANG G V, ROSS P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-582.
|