1 |
张彬, 陈永翀, 张艳萍, 等. 锂浆料电池国际专利技术分析[J]. 储能科学与技术, 2017, 6(5): 1000-1007.
|
|
ZHANG B, CHEN Y C, ZHANG Y P, et al. The international patent technology analysis on lithium slurry battery[J]. Energy Storage Science and Technology, 2017, 6(5): 1000-1007.
|
2 |
YET-MING C, MINAI D, RICHARD H, et al. Compiler: US9362583B2[P]. 2016-06-07.
|
3 |
VU A, QIAN Y Q, STEIN A. Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special[J]. Advanced Energy Materials, 2012, 2(9): 1056-1085.
|
4 |
USSEGLIO-VIRETTA F L E, FINEGAN D P, COLCLASURE A, et al. Quantitative relationships between pore tortuosity, pore topology, and solid particle morphology using a novel discrete particle size algorithm[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab913b.
|
5 |
SANTOKI J, DAUBNER S, SCHNEIDER D, et al. Effect of tortuosity, porosity, and particle size on phase-separation dynamics of ellipsoid-like particles of porous electrodes: Cahn-Hilliard-type phase-field simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(6): 065010.
|
6 |
张大康. 水泥分组分最佳粒度分布探讨[J]. 水泥, 2008(6): 24-28.
|
|
ZHANG D K. Discussion on optimum particle size distribution of cement components[J]. Cement, 2008(6): 24-28.
|
7 |
张大康. 高细石灰石粉对水泥—矿渣粉—粉煤灰胶凝体系性能的优化[C]//全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集, 2006: 371-381.
|
|
ZHANG D K.Optimization of properties of cement-slag powder-fly ash cementitious system with high fine limestone powder[C]//Proceedings of National Symposium on Research and Engineering Application of High Performance Concrete and Mineral Admixtures, 2006: 371-381.
|
8 |
贺阳, 王永海, 张彦胜, 等. 自燃煤矸石粉体颗粒级配的复合改性研究[J]. 混凝土, 2015(6): 100-102.
|
|
HE Y, WANG Y H, ZHANG Y S, et al. Composite modification research about microscopic particle size distribution of self-igniting coal gangue admixture[J]. Concrete, 2015(6): 100-102.
|
9 |
FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 59(2): 67-143.
|
10 |
冯彩梅, 巩宇, 陈永翀, 等. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8.
|
|
FENG C M, GONG Y, CHEN Y C, et al. Performance study of graphite anode slurry in lithium-ion flow battery by ball milling[J]. Journal of Materials Engineering, 2018, 46(2): 1-8.
|
11 |
LI Q, CAO Z, WAHYUDI W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Letters, 2021, 6(1): 69-78.
|
12 |
MING J, LI M L, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries[J]. ACS Energy Letters, 2016, 1(3): 529-534.
|
13 |
CAILLOL J M, LEVESQUE D, WEIS J J. Theoretical calculation of ionic solution properties[J]. The Journal of Chemical Physics, 1986, 85(11): 6645-6657.
|
14 |
THORAT I V, STEPHENSON D E, ZACHARIAS N A, et al. Quantifying tortuosity in porous Li-ion battery materials[J]. Journal of Power Sources, 2009, 188(2): 592-600.
|
15 |
WOOD M, LI J L, DU Z J, et al. Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230429.
|
16 |
LIU H, ZHAO X X, et al. Effect of spherical particle size on the electrochemical properties of lithium iron phosphate[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2019, 34(3): 549-557.
|
17 |
SAMAL S. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite[J]. Powder Technology, 2020, 366: 43-51.
|
18 |
乔龄山. 关于水泥颗粒分布及其作用的部分研究成果介绍[J]. 水泥, 2007,(9):1-7.
|
|
QIAO L S. Introduction of some research results on cement particle distribution and its effect[J]. Cement, 2007(9):1-7.
|
19 |
乔龄山. 关于水泥颗粒分布及其作用的部分研究成果介绍(续)[J]. 水泥, 2007(10): 5-9.
|
|
QIAO L S. Introduction of some research results on cement particle distribution and its function (continued)[J]. Cement, 2007(10): 5-9.
|
20 |
涂亚楠. 颗粒级配优化及界面改性提高褐煤成浆浓度的研究[D]. 北京: 中国矿业大学(北京), 2013.
|
|
TU Y N. Experimental research on improving lianite slurry-ability by packing efficiency optimizing and interface modification[D]. Beijing: China University of Mining & Technology, Beijing, 2013.
|
21 |
张荣曾, 刘炯天, 徐志强, 等. 连续粒度分布的充填效率[J]. 中国矿业大学学报, 2002, 31(6): 552-556.
|
|
ZHANG R Z, LIU J T, XU Z Q, et al. Packing efficiency of continuously distributed particles[J]. Journal of China University of Mining & Technology, 2002, 31(6): 552-556.
|
22 |
郭晔, 朱宝林, 黄新, 等. 浆体中连续粒径粉体的堆积密度计算方法[J]. 混凝土, 2005(6): 20-23.
|
|
GUO Y, ZHU B L, HUANG X, et al. A calculation method for packing density of powder in paste with continuous particle size distribution[J]. Concrete, 2005(6): 20-23.
|
23 |
STOVALL T, DE LARRARD F, BUIL M. Linear packing density model of grain mixtures[J]. Powder Technology, 1986, 48(1): 1-12.
|
24 |
黄新, 朱宝林, 郭晔, 等. 连续粒径粉体在浆体中的堆积密度[J]. 北京航空航天大学学报, 2006, 32(4): 461-465, 470.
|
|
HUANG X, ZHU B L, GUO Y, et al. Packing density of powder in paste with continuous grain size distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4): 461-465, 470.
|
25 |
李琛坤, 王帅, 黄俊. 电化学阻抗谱物理模型求解方法[J]. 储能科学与技术, 2022, 11(3): 912-920.
|
|
LI C K, WANG S, HUANG J. Method for solving physical model of electrochemical impedance spectroscopy[J]. Energy Storage Science and Technology, 2022, 11(3): 912-920.
|
26 |
BARSOUKOV E, KIM D H, LEE H S, et al. Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy[J]. Solid State Ionics, 2003, 161(1/2): 19-29.
|
27 |
杨绍斌, 梁正. 锂离子电池制造工艺原理与应用[M]. 北京: 化学工业出版社, 2020.
|
|
YANG S B, LIANG Z. Fundementals and applications of the manufacturing process of lithium lon batteries[M]. Beijing: Chemical Industry Press, 2020.
|
28 |
ARMSTRONG M J, BERIS A N, ROGERS S A, et al. Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension[J]. Rheologica Acta, 2017, 56(10): 811-824.
|
29 |
ANDREASEN A M. Ueber Die beziehung zwischen kornabstufung und zwischenraum in produkten aus losen Körnern (mit einigen experimenten)[J]. Kolloid-Zeitschrift, 1930, 50(3): 217-228.
|