储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 383-397.doi: 10.19799/j.cnki.2095-4239.2022.0530
刘彦奇1,2(), 宋兆海1,2, 何田2,3, 戴作强2,3, 郑宗敏1,2,3()
收稿日期:
2022-09-18
修回日期:
2022-10-22
出版日期:
2023-02-05
发布日期:
2023-02-24
通讯作者:
郑宗敏
E-mail:Liumemeya@163.com;zmzheng@qdu.edu.cn
作者简介:
刘彦奇(1999—),男,硕士研究生,研究方向为新型动力电池,E-mail: Liumemeya@163.com;
基金资助:
Yanqi LIU1,2(), Zhaohai SONG1,2, Tian HE2,3, Zuoqiang DAI2,3, Zongmin ZHENG1,2,3()
Received:
2022-09-18
Revised:
2022-10-22
Online:
2023-02-05
Published:
2023-02-24
Contact:
Zongmin ZHENG
E-mail:Liumemeya@163.com;zmzheng@qdu.edu.cn
摘要:
可充锌空气电池具有比能量高、工作电压稳定、安全性好、无环境污染等优势,被人们认为是最有前景的绿色能源装置之一。然而,可充锌空气电池的空气电极在充放电过程中需要发生可逆的氧还原和氧析出反应。由于该类反应涉及固-液-气三相界面,因此动力学过程非常缓慢。所以,设计具有高效催化作用的空气电极尤为重要。本论文从可充锌空气电池原理和空气电极结构出发,介绍了传统空气电极与一体化空气电极的结构特点和性能差异。通过对近几年的可充锌空气电池一体化空气电极相关文献的探讨,本文综述了不同导电基底和催化剂组成的一体化空气电极的制备及其锌空气电池性能的研究进展。着重对碳基和金属基一体化电极的优缺点和存在的问题进行总结,提出了这两种电极未来的优化改进方向。进一步介绍了空气电极三相界面结构的重要性和改进策略,分析表明,构建合理的三相界面能够有效提高电化学反应的传输动力学。最后对可充锌空气电池在实用化进程中需要解决的难点问题进行了总结和展望。
中图分类号:
刘彦奇, 宋兆海, 何田, 戴作强, 郑宗敏. 可充锌空气电池一体化空气电极研究进展[J]. 储能科学与技术, 2023, 12(2): 383-397.
Yanqi LIU, Zhaohai SONG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. Research progress on integrated air electrodes for rechargeable Zn-air batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 383-397.
1 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): doi: 10.1021/acs.chemrev.2c00289.. |
2 | ZHOU T P, ZHANG N, WU C Z, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy & Environmental Science, 2020, 13(4): 1132-1153. |
3 | LI X M, LIN Z Z, CHENG L R, et al. Layered MoSi2N4 as electrode material of Zn-air battery[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2022, 16(5): doi: 10.1002/pssr.202200007. |
4 | XU L, ZHOU W G, WANG X H, et al. Metal-air battery system design and electrical performance analysis[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2022: 743-750. |
5 | LEE H, LISTYAWAN T A, PARK N, et al. Effect of Zn addition on electrochemical performance of Al-air battery[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(2): 505-509. |
6 | 许可, 王保国. 锌-空气电池空气电极研究进展[J]. 储能科学与技术, 2017, 6(5): 924-940. |
XU K, WANG B G. A review of air electrodes for zinc air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 924-940. | |
7 | HUANG D Y, CAO F Y, YING T, et al. High-energy-capacity metal-air battery based on a magnetron-sputtered Mg-Al anode[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230874. |
8 | GU P, XU Y X, ZHAO Y F, et al. Electrocatalysis of rechargeable non-lithium metal-air batteries[J]. Advanced Materials Interfaces, 2017, 4(19): doi: 10.1002/admi.201700589. |
9 | LIU X, JIAO H D, WANG M Y, et al. Current progresses and future prospects on aluminium-air batteries[J]. International Materials Reviews, 2022, 67(7): 734-764. |
10 | DEYAB M A, MOHSEN Q. Improved battery capacity and cycle life in iron-air batteries with ionic liquid[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110729. |
11 | SUN W, KÜPERS V, WANG F, et al. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air[J]. Angewandte Chemie (International Ed in English), 2022, 61(38): doi: 10.1002/anie.202207353. |
12 | CHEN G D, XU Y Y, HUANG L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 55: 183-189. |
13 | PENG Y M, LAI C G, ZHANG M, et al. Zn-Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231173. |
14 | 邓晓华, 江柱, 陈超, 等. 沸石咪唑基金属有机框架及其衍生材料用作锌-空气电池高效阴极催化剂的最新进展[J]. 储能科学与技术, 2022, 11(3): 964-981. |
DENG X H, JIANG Z, CHEN C, et al. Recent advances in zeolitic imidazolium-based metal-organic frameworks(ZIFs)and their derivatives as efficient cathode catalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. | |
15 | 翁晓琳, 刘佩佩, 刘江, 等. 锌空气电池研究进展[J]. 电源技术, 2019, 43(4): 716-719. |
WENG X L, LIU P P, LIU J, et al. Research progress of zinc-air batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 716-719. | |
16 | ZHANG J, ZHOU Q X, TANG Y W, et al. Zinc-air batteries: Are they ready for prime time?[J]. Chemical Science, 2019, 10(39): 8924-8929. |
17 | LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. |
18 | SUN W, MA M M, ZHU M G, et al. Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(9): doi: 10.1002/smll.202106604. |
19 | ZHAO Z X, YU W T, SHANG W X, et al. Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Zn-air batteries[J]. International Journal of Energy Research, 2022, 46(6): 7694-7703. |
20 | LI X F, LIU Y J, CHEN H B, et al. Rechargeable Zn-air batteries with outstanding cycling stability enabled by ultrafine FeNi nanoparticles-encapsulated N-doped carbon nanosheets as a bifunctional electrocatalyst[J]. Nano Letters, 2021, 21(7): 3098-3105. |
21 | JIN H H, KOU Z K, CAI W W, et al. P-Fe bond oxygen reduction catalysts toward high-efficiency metal-air batteries and fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(18): 9121-9127. |
22 | PENG Z, WANG H T, XIA X C, et al. Integration of CoFe alloys and Fe/Fe3C nanoparticles into N-doped carbon nanosheets as dual catalytic active sites to promote the oxygen electrocatalysis of Zn-air batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9009-9016. |
23 | XU Z Y, YAN L, SHEN J L, et al. Hierarchical mesoporous S, N-codoped carbon nanostructures composed of Co/Co-Cu-S/carbon nanoplate arrays on carbon nanofibers as a self-supported air cathode for long-lasting rechargeable Zn-air batteries[J]. Science China Technological Sciences, 2022, 65(3): 693-703. |
24 | NIU Y L, GONG S Q, LIU X, et al. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries[J]. eScience, 2022, 2(5): 546-556. |
25 | 朱子岳, 符冬菊, 陈建军, 等. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
ZHU Z Y, FU D J, CHEN J J, et al. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. | |
26 | WANG P C, JIA T, WANG B G. Review—recent advance in self-supported electrocatalysts for rechargeable zinc-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba96e. |
27 | WU K Z, ZHANG L, YUAN Y F, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(32): doi: 10.1002/adma.202002292. |
28 | SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(3): doi: 10.1002/adma.201806326. |
29 | XU Z A, ZHU J, SHAO J Z, et al. Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries[J]. Energy Storage Materials, 2022, 47: 365-375. |
30 | XU N N, ZHANG Y X, WANG M, et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104021. |
31 | LIU S J, AMIINU I S, LIU X B, et al. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries[J]. Chemical Engineering Journal, 2018, 342: 163-170. |
32 | 陈志城, 李宗旭, 蔡玲, 等. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
CHEN Z C, LI Z X, CAI L, et al. Development status and future prospects of flexible metal-air batteries[J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. | |
33 | WANG Y J, CAO Q H, GUAN C, et al. Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(33): doi: 10.1002/smll.202002902. |
34 | YAN X X, HA Y, WU R B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives[J]. Small Methods, 2021, 5(4): doi: 10.1002/smtd.202000827. |
35 | WU J K, LIU B, FAN X Y, et al. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes[J]. Carbon Energy, 2020, 2(3): 370-386. |
36 | LI M, CHEN S H, LI B, et al. In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn-air batteries driving water splitting[J]. Electrochimica Acta, 2021, 388: doi: 10.1016/j.electacta.2021.138587. |
37 | YAN S F, LUO C, ZHANG H, et al. In-Situ derived Co1- xS@nitrogen-doped carbon nanoneedle array as a bifunctional electrocatalyst for flexible zinc-air battery[J]. Journal of Electroanalytical Chemistry, 2021, 900: doi: 10.1016/j.jelechem.2021.115711. |
38 | ZHENG X Y, MOHAMMADI N, MORENO ZURIA A, et al. Advanced zinc-air batteries with free-standing hierarchical nanostructures of the air cathode for portable applications[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61374-61385. |
39 | JI H Q, WANG M F, LIU S S, et al. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries[J]. Electrochimica Acta, 2020, 334: doi: 10.1016/j.electacta.2019.135562. |
40 | GUO J, KANG L Q, LU X K, et al. Self-activated cathode substrates in rechargeable zinc-air batteries[J]. Energy Storage Materials, 2021, 35: 530-537. |
41 | GAO Y. Prediction the differences of permeability between carbon fiber paper and carbon fiber cloth in PEM fuel cells[C]//Proceedings of ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology Collocated With ASME 2011 5th International Conference on Energy Sustainability, August 7-10, 2011, Washington, DC, USA. 2012: 789-798. |
42 | WANG Y, WANG C Y, CHEN K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 52(12): 3965-3975. |
43 | LIU X Z, TANG T, JIANG W J, et al. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries[J]. Chemical Communications (Cambridge, England), 2020, 56(40): 5374-5377. |
44 | JANANI G, SURENDRAN S, CHOI H, et al. In situ grown CoMn2 O4 3D-tetragons on carbon cloth: Flexible electrodes for efficient rechargeable zinc-air battery powered water splitting systems[J]. Small, 2021, 17(47): doi: 10.1002/smll.202103613. |
45 | LI S X, ZHANG H, WU L, et al. Vacancy-engineered CeO2/Co heterostructure anchored on the nitrogen-doped porous carbon nanosheet arrays vertically grown on carbon cloth as an integrated cathode for the oxygen reduction reaction of rechargeable Zn-air battery[J]. Journal of Materials Chemistry A, 2022, 10(18): 9858-9868. |
46 | YAN L, XU Z Y, LIU X N, et al. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137049. |
47 | LU Q, ZOU X H, LIAO K M, et al. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-air batteries[J]. Carbon Energy, 2020, 2(3): 461-471. |
48 | LI F, LIU Y L, WANG G G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9675-9684. |
49 | CHEN L L, SONG Z H, LI Z, et al. Integrated CoO nanoparticles@ porous carbon nanosheets arrays on carbon cloth as cathode for rechargeable Zn-air batteries[J]. Journal of Alloys and Compounds, 2022, 894: doi: 10.1016/j.jallcom.2021.162456. |
50 | LAI C L, LI H M, SHENG Y, et al. 3D spatial combination of CN vacancy-mediated NiFe-PBA with N-doped carbon nanofibers network toward free-standing bifunctional electrode for Zn-air batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(11): doi: 10.1002/advs.202105925. |
51 | LI Z Y, HAN W J, JIA P, et al. Co3O4 nanoneedle array grown on carbon fiber paper for air cathodes towards flexible and rechargeable Zn-air batteries[J]. Nanomaterials (Basel, Switzerland), 2021, 11(12): 3321. |
52 | ZHENG X J, CAO X C, ZENG K, et al. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(4): doi: 10.1002/smll.202006183. |
53 | YANG L P, ZHANG X, YU L X, et al. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 H[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202105410. |
54 | ZOU S B, LI J J, WU X Q, et al. Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn-air batteries[J]. Chemical Physics Letters, 2021, 778: doi: 10.1016/j.cplett.2021.138769. |
55 | WANG Y Y, LI Z G, ZHANG P, et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries[J]. Nano Energy, 2021, 87: doi: 10.1016/j.nanoen.2021.106147. |
56 | WANG T, KUNIMOTO M, MORI T, et al. Carbonate formation on carbon electrode in rechargeable zinc-air battery revealed by in situ Raman measurements[J]. Journal of Power Sources, 2022, 533: doi: 10.1016/j.jpowsour.2022.231237. |
57 | ZHENG W R, LIU M J, LEE L Y S. Best practices in using foam-type electrodes for electrocatalytic performance benchmark[J]. ACS Energy Letters, 2020, 5(10): 3260-3264. |
58 | XU N N, WILSON J A, WANG Y D, et al. Flexible self-supported bi-metal electrode as a highly stable carbon-and binder-free cathode for large-scale solid-state zinc-air batteries[J]. Applied Catalysis B: Environmental, 2020, 272: doi: 10.1016/j.apcatb.2020.118953. |
59 | TAN P, CHEN B, XU H R, et al. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries[J]. Applied Catalysis B: Environmental, 2019, 241: 104-112. |
60 | YE J H, ZHAI X W, CHEN L, et al. Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage[J]. Journal of Energy Chemistry, 2021, 62: 252-261. |
61 | LV X W, LIU Y P, TIAN W W, et al. Aluminum and phosphorus codoped "superaerophobic" Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries[J]. Journal of Energy Chemistry, 2020, 50: 324-331. |
62 | HAN X T, LI N N, XIONG P X, et al. Rhenium induced electronic structure modulation of Ni3S2/N-doped graphene for efficient trifunctional electrocatalysis[J]. Composites Part B: Engineering, 2022, 234: doi: 10.1016/j.compositesb.2022.109670. |
63 | HUANG K, GUO S, WANG R Y, et al. Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes[J]. Chinese Journal of Catalysis, 2020, 41(11): 1754-1760. |
64 | HOU C C, ZOU L L, WANG Y, et al. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(48): 21360-21366. |
65 | WU M J, ZHANG G X, CHEN N, et al. A self-supported electrode as a high-performance binder-and carbon-free cathode for rechargeable hybrid zinc batteries[J]. Energy Storage Materials, 2020, 24: 272-280. |
66 | JADHAV A R, PUGUAN J M C, KIM H. Microwave-assisted synthesis of a stainless steel mesh-supported Co3O4 microrod array as a highly efficient catalyst for electrochemical water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 11069-11079. |
67 | LIU Y Q, SONG Z H, LI Z, et al. Standing NiFe LDH nanosheets on stainless steel fibers felt: A synergistic impact on the oxygen evolution reaction (OER) for the water splitting[J]. Catalysis Communications, 2022, 164: doi: 10.1016/j.catcom.2022.106425. |
68 | CHOWDHURY A, LEE K C, WEI LIM M S, et al. The zinc-air battery performance with Ni-doped MnO2 electrodes[J]. Processes, 2021, 9(7): 1087. |
69 | CHANG C C, LEE Y C, LIAO H J, et al. Flexible hybrid Zn-Ag/air battery with long cycle life[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2860-2866. |
70 | WU M J, ZHANG G X, TONG H, et al. Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105409. |
71 | ZHAO Z X, YU W T, SHANG W X, et al. Rigorous assessment of electrochemical rechargeability of alkaline Zn-air batteries[J]. Journal of Power Sources, 2022, 543: doi: 10.1016/j.jpowsour.2022.231844. |
72 | TANG K, HU H B, XIONG Y, et al. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(24): doi: 10.1002/anie.202202671. |
73 | SHANG W X, YU W T, MA Y Y, et al. Constructing the triple-phase boundaries of integrated air electrodes for high-performance Zn-air batteries[J]. Advanced Materials Interfaces, 2021, 8(21): doi: 10.1002/admi.202101256. |
74 | YU J, LI B Q, ZHAO C X, et al. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(12): doi: 10.1002/adma.201908488. |
75 | TIAN W W, REN J T, LV X W, et al. A "gas-breathing" integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries[J]. Chemical Engineering Journal, 2022, 431: doi: 10.1016/j.cej.2021.133210. |
76 | WANG M M, MENG Y H, LI K, et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer[J]. eScience, 2022, 2(5): 509-517. |
77 | 尤祥, 何翠萍, 陈远亮, 等. 锌-空气电池的枝晶生长机理及抑制[J/OL].中国有色金属学报. [2022-12-28]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220612.1429.001.html. |
YOU X, HE C P, CHEN Y L, et al. Mechanism and inhibition of dendrite growth in zinc-air batteries[J/OL]. The Chinese Journal of Nonferrous Metals. [2022-12-28]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220612.1429.001.html. | |
78 | WANG K L, ZUO Y Y, PEI P C, et al. Zn-Ni reaction in the alkaline zinc-air battery using a nickel-supported air electrode[J]. Materials Today Energy, 2021, 21: doi: 10.1016/j.mtener.2021.100823. |
[1] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
[2] | 胡铭昌, 周雪晴, 陈锦军, 黄雪妍, 陈玮, 薛建军. 实用大容量三电极方形锌空气电池[J]. 储能科学与技术, 2022, 11(2): 434-441. |
[3] | 胡铭昌, 周雪晴, 黄雪妍, 薛建军. 无溶剂制备锌空气电极及电池性能[J]. 储能科学与技术, 2021, 10(6): 2090-2096. |
[4] | 朱子岳, 符冬菊, 陈建军, 曾燮榕. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
[5] | 许 可,王保国. 锌-空气电池空气电极研究进展[J]. 储能科学与技术, 2017, 6(5): 924-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||