储能科学与技术 ›› 2014, Vol. 3 ›› Issue (3): 262-282.doi: 10.3969/j.issn.2095-4239.2014.03.012
刘亚利, 吴娇杨, 李泓
收稿日期:
2014-03-31
出版日期:
2014-05-01
发布日期:
2014-05-01
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
第一作者:刘亚利(1987--),女,博士研究生,研究方向为电解质及锂空气电池,E-mail:liuyali09@gmail.com;
基金资助:
LIU Yali, WU Jiaoyang, LI Hong
Received:
2014-03-31
Online:
2014-05-01
Published:
2014-05-01
摘要: 电解质是锂离子电池的重要组成部分,它起着在正负极之间传输Li+的作用.因此,电解质的研究与开发对锂离子电池来说至关重要,然而综合性能优异,满足不同应用的电解液并不容易开发.本文简介了非水液体电解质的发展历史和基本性质,然后分别从锂盐,溶剂和添加剂方面进行论述,最后介绍了离子液体,凝胶聚合物电解质和高电压电解质,认为未来锂离子电池电解质要解决的问题有:电解液和电池的安全性,提高电解质的工作电压,拓宽其工作温度范围,延长电池寿命和降低成本.
中图分类号:
刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题(Ⅸ)----非水液体电解质材料[J]. 储能科学与技术, 2014, 3(3): 262-282.
LIU Yali, WU Jiaoyang, LI Hong. Fundamental scientific aspects of lithium ion batteries (Ⅸ)----Nonaqueous electrolyte materials[J]. Energy Storage Science and Technology, 2014, 3(3): 262-282.
[1] Tobias C W. Electrochemical studies in cyclic carbonate esters[J]. Journal of the Electrochemical Society ,1957,104(8):C171. [2] Eineli Y,Thomas S R,Koch V R. New electrolyte system for Li-ion battery[J]. Journal of the Electrochemical Society ,1996, 143(9):L195-L197. [3] Ma S H,Li J,Jing X B, et al . A study of cokes used as anodic materials in lithium ion rechargeable batteries[J]. Solid State Ionics ,1996,86(8):911-917. [4] Nishi Y,Azuma H,Omaru A. Non-aq. electrolyte cell having improved cycling characteristics|by close control of the interlayer spacings of the carbonaceous anode, the true density and the temp. at which exothermic peaks appear:EP,357001-A1; JP,2066856-A; US,4959281-A; EP,357001-B1; DE,68919943-E; JP,2674793-B2; JP,10003948-A; JP,2812324-B2; KR,9711198-B1[P/OL]. 1990-03-07. http://www.google.com/patents/US4959281. [5] Fong R,Vonsacken U,Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells[J]. Journal of the Electrochemical Society ,1990,137(7):2009-2013. [6] Guyomard D,Tarascon J M. Rechargeable Li 1+ x Mn 2 O 4 /carbon cells with a new electrolyte-composition-potentiostatic studies and application to practical cells[J]. Journal of the Electrochemical Society ,1993,140(11):3071-3081. [7] Tarascon J M,Guyomard D. New electrolyte compositions stable over the 0 V to 5 V voltage range and compatible with the Li 1+ x Mn 2 O 4 carbon Li-ion cells[J]. Solid State Ionics ,1994, 69(3-4):293-305. [8] Dahn J R,Vonsacken U,Juzkow M W, et al . Rechargeable LiNiO 2 carbon cells[J]. Journal of the Electrochemical Society ,1991,138(8):2207-2211. [9] Ohzuku T,Iwakoshi Y,Sawai K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. Journal of the Electrochemical Society ,1993, 140(9):2490-2498. [10] Koch V R,Young J H. Stability of secondary lithium electrode in tetrahydrofuran-based electrolytes[J]. Journal of the Electrochemical Society ,1978,125(9):1371-1377. [11] Desjardins C D,Cadger T G,Salter R S, et al . Lithium cycling performance in improved lithium hexafluoroarsenate 2-methyl tetrahydrofuran electrolytes[J]. Journal of the Electrochemical Society ,1985,132(3):529-533. [12] Abraham K M,Goldman J L,Natwig D L. Characterization of ether electrolytes for rechargeable lithium cells[J]. Journal of the Electrochemical Society ,1982,129(11):2404-2409. [13] Yoshimatsu I,Hirai T,Yamaki J. Lithium electrode morphology during cycling in lithium cells[J]. Journal of the Electrochemical Society ,1988,135(10):2422-2427. [14] Ue M,Mori S. Mobility and ionic association of lithium-salts in a propylene carbonate-ethyl methyl carbonate mixed-solvent[J]. Journal of the Electrochemical Society ,1995,142(8): 2577-2581. [15] Methlie I G J. Electric current producing cell:US, 3415687A[P/OL]. 1968. [16] Hu Y S,Li H,Huang X J, et al . Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries[J]. Electrochemistry Communications ,2004,6(1): 28-32. [17] Ozawa K. Lithium-ion rechargeable batteries with LiCoO 2 and carbon electrodes:The LiCoO 2 /C system[J]. Solid State Ionics ,1994,69(3-4):212-221. [18] Xu K,Zhang S S,Jow T R, et al . LiBOB as salt for lithium-ion batteries:A possible solution for high temperature operation[J]. Electrochemical and Solid State Letters ,2002,5(1): A26-A29. [19] Kelley B,Northrup M,Hurley P D. Effect of riboflavin and pteroylglutamic acid on growth and white cell production of rats[J]. Proceedings of the Society for Experimental Biology and Medicine ,1951,76(4):804-806. [20] Hongbo H,Jun G,Zhou Z B, et al . Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications ,2011,13(3):265-268. [21] Murugavel S. Origin of non-Arrhenius conductivity in fast ion conducting glasses[J]. Physical Review B ,2005,72(13): 134204-134213. [22] Gu G Y,Bouvier S,Wu C, et al . 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries[J]. Electrochimica Acta ,2000,45(19):3127-3139. [23] Doyle M,Fuller T F,Newman J. The importance of the lithium ion transference number in lithium polymer cells[J]. Electrochimica Acta ,1994,39(13):2073-2081. [24] Fujinami T,Buzoujima Y. Novel lithium salts exhibiting high lithium ion transference numbers in polymer electrolytes[J]. Journal of Power Sources ,2003,119:438-441. [25] Liaw B Y,Roth E P,Jungst R G, et al . Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells[J]. Journal of Power Sources ,2003,119:874-886. [26] Tsunashima K,Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes[J]. Electrochemistry Communications ,2007,9(9): 2353-2358. [27] Matsumoto H,Sakaebe H,Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and. asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte[J]. Journal of Power Sources ,2005, 146(1-2):45-50. [28] Ding M S,Jow T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiPF 6 [J]. Journal of the Electrochemical Society ,2003,150(5):A620-A628. [29] Webber A. Conductivity and viscosity of solutions of LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, and their mixtures[J]. Journal of the Electrochemical Society ,1991,138(9):2586-2590. [30] Shu Z X,Mcmillan R S,Murray J J. Electrochemical intercalation of lithium into graphite[J]. Journal of the Electrochemical Society ,1993,140(4):922-927. [31] Jean M,Chausse A,Messina R. Analysis of the passivating layer and the electrolyte in the system:Petroleum coke/solution of LiCF 3 SO 3 in mixed organic carbonates[J]. Electrochimica Acta ,1998,43(12-13):1795-1802. [32] Zheng Jieyun(郑杰允),Li Hong(李泓). Fundamental scientific aspects of lithium batteries (V) Interfaces[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(5):503-513. [33] Zheng Honghe(郑洪河). 锂离子电池电解质[M]. Beijing:Chimecal Industry Press,2006. [34] Thomas M,Bruce P G,Goodenough J B. AC impedance analysis of polycrystalline insertion electrodes:Application to Li 1- x CoO 2 [J]. Journal of the Electrochemical Society ,1985,132(7): 1521-1528. [35] Guyomard D,Tarascon J M. The carbon Li 1+ x Mn 2 O 4 system[J]. Solid State Ionics ,1994,69(3-4):222-237. [36] Tarascon J M,Guyomard D. The Li 1+ x Mn 2 O 4 /C rocking-chair system:A review[J]. Electrochimica Acta ,1993,38(9): 1221-1231. [37] Aurbach D,Markovsky B,Levi M D, et al . New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources ,1999,81:95-111. [38] Ostrovskii D,Ronci F,Scrosati B, et al . Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: Spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. Journal of Power Sources ,2001, 103(1):10-17. [39] Edstrom K,Gustafsson T,Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta ,2004, 50(2-3):397-403. [40] Liu N,Li H,Wang Z X, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid State Letters ,2006,9(7):A328-A331. [41] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev. ,2004,104(10): 4303-4317. [42] Arora P,White R E,Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society ,1998,145(10):3647-3667. [43] Campion C L,Li W T,Lucht B L. Thermal decomposition of LiPF 6 -based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2005,152(12):A2327-A2334. [44] Maleki H,Deng G P,Anani A, et al . Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society ,1999,146(9):3224-3229. [45] Ravdel B,Abraham K M,Gitzendanner R, et al . Thermal stability of lithium-ion battery electrolytes[J]. Journal of Power Sources ,2003,119:805-810. [46] Sloop S E,Pugh J K,Wang S, et al . Chemical reactivity of PF 5 and LiPF 6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid State Letters ,2001,4(4): A42-A44. [47] Yang H,Zhuang G V,Ross P N. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6 [J]. Journal of Power Sources ,2006,161(1):573-579. [48] Blomgren G E. Electrolytes for advanced batteries[J] . Journal of Power Sources ,1999,81:112-118. [49] Zhang X,Ross P N,Kostecki R, et al . Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles[J]. Journal of the Electrochemical Society , 2001,148(5):A463-A470. [50] Zhuang Quanchao(庄全超),Wu Shan(武山),Liu Wenyuan(刘文元), et al . The research of organic electrolyte solutions for Li-ion batteries[J]. Electrochemistry (电化学),2001,4(7):403-412. [51] Fry A J. Synthetic Organic Electrochemistry[M]. London:John Wiley Press,1989. [52] Aurbach D. Nonaqueous Electrochemistry[M]. New York:Marcel-Dekker Press,1999. [53] Harris W S. Electrochemical studies in cyclic esters[D] California:University of California,1958. [54] Sugeno N,Anzai M,Nagaura T. Non-aq. electrolyte secondary battery-has carbon@material negative electrode,lithium complex oxide,positive electrode and mixed solvent electrolyte:EP,486950-A; EP,486950-A1; CA,2055305-A; JP,4184872-A; JP,4280082-A; US,5292601-A; EP,486950-B1; DE,69103384-E; JP,3079613-B2; JP,3089662-B2; JP,2000268864-A; CA,2055305-C; JP,3356157-B2 [P/OL]. 1992-05-27. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=EP&PN=486950&DT=A&SrcAuth=Wila&Token=uxTOe.GiY2bHu08Rjd6xHXjcM_VTwlq3vOi381uNAPAwH.cAlHY8oLoVC1_0DHp7WmziB3PJWDsx_TyLKY5NC3EJugKKbcHx4Ohk6W_mhI0. [55] Selim R,Bro P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte[J]. Journal of the Electrochemical Society ,1974,121(11):1457-1459. [56] Rauh R D,Brummer S B. Effect of additives on lithium cycling in propylene carbonate[J]. Electrochimica Acta ,1977,22(1): 75-83. [57] Rauh R D,Reise T F,Brummer S B. Efficiencies of cycling lithium on a lithium substrate in propylene carbonate[J]. Journal of the Electrochemical Society ,1978,125(2):186-190. [58] Aurbach D,Daroux M L,Faguy P W, et al . Identification of surface-films formed on lithium in propylene carbonate solutions[J]. Journal of the Electrochemical Society ,1987,134(7): 1611-1620. [59] Chung G C,Kim H J,Yu S I, et al . Origin of graphite exfoliation:An investigation of the important role of solvent cointercalation[J]. Journal of the Electrochemical Society ,2000, 147(12):4391-4398. [60] Newman G H,Francis R W,Gaines L H, et al . Hazard investigations of LiClO 4 -dioxolane electrolyte[J]. Journal of the Electrochemical Society ,1980,127(9):2025-2027. [61] Xu K,Ding M S,Jow T R. Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors[J]. Journal of the Electrochemical Society ,2001,148(3):A267-A274. [62] Elliott W. Contract NAS 3-6015 (N 65-11518)[R]. 1964. [63] Pistoia G,Derossi M,Scrosati B. Study of behavior of ethylene carbonate as a nonaqueous battery solvent[J]. Journal of the Electrochemical Society ,1970,117(4):500-502. [64] Abraham K M,Foos J S,Goldman J L. Long cycle-life secondary lithium cells utilizing tetrahydrofuran[J]. Journal of the Electrochemical Society ,1984,131(9):2197-2199. [65] Geronov Y,Puresheva B,Moshtev R V, et al . Rechargeable compact Li cells with Li x Cr 0.9 V 0.1 S 2 and Li 1+ x V 3 O 8 cathodes and ether-based electrolytes[J]. Journal of the Electrochemical Society ,1990,137(11):3338-3344. [66] Takami N,Ohsaki T,Inada K. The impedance of lithium electrodes in LiPF 6 -based electrolytes[J]. Journal of the Electrochemical Society ,1992,139(7):1849-1854. [67] Yamaura J,Ozaki Y,Morita A, et al. High-voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material[J]. Journal of Power Sources ,1993, 43(1-3):233-239. [68] Zhang S S,Liu Q G,Yang L L. Polyacene as an anode in lithium ion batteries[J]. Journal of the Electrochemical Society ,1993, 140(7):L107-L108. [69] Guyomard D,Tarascon J M. Li metal-free rechargeable LiMn 2 O 4 /carbon cells:Their understanding and optimization[J]. Journal of the Electrochemical Society ,1992,139(4): 937-948. [70] Aurbach D,Eineli Y,Markovsky B, et al . The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteriesⅡ. Graphite-electrodes[J]. Journal of the Electrochemical Society ,1995,142(9):2882-2890. [71] Eineli Y,Thomas S R,Koch V, et al . Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society ,1996,143(12):L273-L277. [72] Campbell S A,Bowes C,Mcmillan R S. The electrochemical- behavior of tetrahydrofuran and propylene carbonate without added electrolyte[J]. Journal of Electroanalytical Chemistry ,1990, 284(1):195-204. [73] Laoire C O,Mukerjee S,Plichta E J, et al . Rechargeable lithium/tegdme-LiPF 6 /O 2 battery[J]. Journal of the Electrochemical Society ,2011,158(3):A302-A308. [74] Jung H G,Hassoun J,Park J B, et al . An improved high-performance lithium-air battery[J]. Nature Chemistry , 2012,4(7):579-585. [75] Li L F,Lee H S,Li H, et al . New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors[J]. Journal of Power Sources ,2008,184(2):517-521. [76] Xie B,Lee H S,Li H, et al . New electrolytes using Li 2 O or Li 2 O 2 oxides and tris (pentafluorophenyl) borane as boron based anion receptor for lithium batteries[J]. Electrochemistry Communications , 2008,10(8):1195-1197. [77] Linden D. Handbook of Batteries[M]. New York:Mcgraw-Hill Press,1995. [78] Ue M. Mobility and ionic association of lithium and quaternary ammonium-salts in propylene carbonate and gamma-butyrolactone[J]. Journal of the Electrochemical Society ,1994,141(12): 3336-3342. [79] Hayashi K,Nemoto Y,Tobishima S, et al . Mixed solvent electrolyte for high voltage lithium metal secondary cells[J]. Electrochimica Acta ,1999,44(14):2337-2344. [80] Krause L J,Lamanna W,Summerfield J, et al . Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells[J]. Journal of Power Sources ,1997,68(2):320-325. [81] Behl W K,Plichta E J. Stability of aluminum substrates in lithium-ion battery electrolytes[J]. Journal of Power Sources , 1998,72(2):132-135. [82] Plichta e J,Behl W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources ,2000, 88(2):192-196. [83] Aurbach D. Nonaqueous Electrochemistry [M]. New York:Marcel Dekker,1999. [84] Zhang S S,Xu K,Jow T R. Study of LiBF 4 as an electrolyte salt for a Li-ion battery[J]. Journal of the Electrochemical Society , 2002,149(5):A586-A590. [85] Takami N,Ohsaki T,Hasebe H, et al . Laminated thin Li-ion batteries using a liquid electrolyte[J]. Journal of the Electrochemical Society ,2002,149(1):A9-A12. [86] Zhang S S,Xu K,Jow T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications ,2002,4(11):928-932. [87] Ue M,Murakami A,Nakamura S. Anodic stability of several anions examined by abinitio molecular orbital and density functional theories[J]. Journal of the Electrochemical Society ,2002,149(12):A1572-A1577. [88] Ue M,Takeda M,Takehara M, et al . Electrochemical properties of quaternary ammonium salts for electrochemical capacitors[J]. Journal of the Electrochemical Society ,1997,144(8): 2684-2688. [89] Takata K,Morita M,Matsuda Y, et al . Cycling characteristics of secondary Li electrode in LiBF 4 mixed ether electrolytes[J]. Journal of the Electrochemical Society ,1985,132(1):126-128. [90] Aurbach D,Zaban A,Schechter A, et al. the study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes[J]. Journal of the Electrochemical Society ,1995,142(9):2873-2882. [91] Nanjundiah C,Goldman J L,Dominey L A, et al. Electrochemical stability of LiMF 6 (M=P,As,Sb)in tetrahydrofuran and sulfolane[J]. Journal of the Electrochemical Society ,1988,135(12):2914-2917. [92] Plichta E,Slane S,Uchiyama M, et al . An improved Li/Li x CoO 2 rechargeable cell[J]. Journal of the Electrochemical Society , 1989,136(7):1865-1869. [93] Naoi K,Mori M,Naruoka Y, et al . The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide) [LiN(C 2 F 5 SO 2 ) 2 ][J]. Journal of the Electrochemical Society ,1999,146(2):462-469. [94] Foropoulos J,Desmarteau D D. Synthesis, properties, and reactions of bis[(trifluoromethyl) sulfonyl] imide, (CF 3 SO 2 ) 2 NH[J]. Inorganic Chemistry ,1984,23(23):3720-3723. [95] Sylla S,Sanchez J Y,Armand M. Electrochemical study of linear and cross-linked poe-based polymer electrolytes[J]. Electrochimica Acta ,1992,37(9):1699-1701. [96] Yang H,Kwon K,Devine T M, et al . Aluminum corrosion in lithium batteries:An investigation using the electrochemical quartz crystal microbalance[J]. Journal of the Electrochemical Society ,2000,147(12):4399-4407. [97] Nakajima T,Mori M,Gupta V, et al . Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries[J]. Solid State Sciences ,2002,4(11-12):1385-1394. [98] Dicenso D,Exnar I,Graetzel M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications , 2005,7(10):1000-1006. [99] Michot C,Armand M,Sanchez J, et al . New ionically conductive material-contains ionic cpd. with fluoro:Sulphonyl substituent,useful as electrolyte for lithium battery,etc:WO,9526056-A; EP,699349-A; FR,2717612-A; FR,2717612-A1; WO,9526056-A1; EP,699349-A1; JP,8511274-W; US,5916475-A; US,6254797-B1; US,2001025943-A1; US,6682855-B2; CA,216336-C; JP,2006210331-A; JP,3878206-B2; EP,699349-B1; DE,69535612-E; DE,69535612-T2[P/OL]. 1995-09-22. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=WO&PN=9526056&DT=A&SrcAuth=Wila&Token=Io6_blYNv8J9zDfT62whrf3t8N3eZb3waLjBKuZlK3b03XxIu3Iwd1_aZcLct9dvPJxc6K8fkTiGlt41Jqt2k3B_MbkAyWE_w1nDpCw9LO1. [100] Zaghib K,Charest P,Guerfi A, et al . Safe Li-ion polymer batteries for HEV applications[J]. Journal of Power Sources , 2004,134(1):124-129. [101] Zaghib K,Charest P,Guerfi A, et al . LiFePO 4 safe Li-ion polymer batteries for clean environment[J]. Journal of Power Sources ,2005,146(1-2):380-385. [102] Li L,Zhou S,Han H, et al . Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society ,2011,158(2):A74-A82. [103] Zhou S,Han H,Nie J, et al . Improving the high-temperature resilience of LiMn 2 O 4 based batteries:LiFNFSI an effective salt[J]. Journal of the Electrochemical Society ,2012,159(8): A1158-A1164. [104] Lischka U,Wietelmann U,Wegner M. Easily prepared,environmentally compatible,stable lithium borate complex salts:WO,200000495-A; DE,19829030-C; EP,1091963-A; DE,19829030-C1; WO,200000495-A1; EP,1091963-A1; KR,2001072657-A; JP,2002519352-W; EP,1091963-B1; DE,59902958-G; US,6506516-B1; ES,2185354-T3; CA,2336323-C; JP,3913474-B2; KR,716373-B1[P/OL]. http://www.thomsonpatentstore.net/portal/ servlet/DIIDirect?CC=WO&PN=9807729&DT=A&SrcAuth=Wila&Token=xqe_w0UirTZEPeDTdK9CexJ7MaNr3lTbxB3FfyrnG2XFY1eMRGFaJNN_TTO8lQY5_1_0etmwZiy_GokZWUmD2VX.rNh8BURFkScvjBpk4JE. [105] Zavalij P Y,Yang S,Whittingham M S. Structural chemistry of new lithium bis (oxalato) borate solvates[J]. Acta Crystallographica Section B : Structural Science ,2004,60:716-724. [106] Xu K,Lee U,Zhang S S, et al . Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes[J]. Electrochemical and Solid State Letters ,2003,6(7): A144-A148. [107] Xu K,Zhang S S,Jow T R. Formation of the graphite electrolyte interface by lithium bis (oxalato) borate[J]. Electrochemical and Solid State Letters ,2003,6(6):A117-A120. [108] Xu K,Zhang S S,Poese B A, et al . Lithium bis (oxalato) borate stabilizes graphite anode in propylene carbonate[J]. Electrochemical and Solid State Letters ,2002,5(11):A259-A262. [109] Eineli Y,Thomas S R,Koch V R. The role of SO 2 as an additive to organic Li-ion battery electrolytes[J]. Journal of the Electrochemical Society ,1997,144(4):1159-1165. [110] Aurbach D,Gamolsky K,Markovsky B, et al . On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries[J]. Electrochimica Acta ,2002,47(9): 1423-1439. [111] Wrodnigg G H,Wrodnigg T M,Besenhard J O, et al . Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochemistry Communications ,1999,1(3-4):148-150. [112] Wrodnigg G H,Besenhard J O,Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J]. Journal of the Electrochemical Society ,1999,146(2): 470-472. [113] Girard H,Simon N,Ballutaud D, et al . Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes[J]. Diamond and Related Materials ,2007,16(2): 316-325. [114] Herlem G,Fahys B,Szekely M, et al . n-Butylamine as solvent for lithium salt electrolytes, structure and properties of concentrated solutions[J]. Electrochimica Acta ,1996,41(17):2753-2760. [115] Aurbach D,Eineli Y,Chusid O, et al . The correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries[J]. Journal of the Electrochemical Society ,1994,141(3): 603-611. [116] Shu Z X,mcmillan R S,Murray J J. Effect of 12 crown-4 on the electrochemical intercalation of lithium into graphite[J]. Journal of the Electrochemical Society ,1993,140(6):L101-L103. [117] Lee H S,Sun X,Yang X Q, et al . Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution[J]. Journal of the Electrochemical Society ,2000,147(1):9-14. [118] Lee H S,Yang X Q,Mcbreen J, et al . The synthesis of a new family of anion receptors and the studies of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions[J]. Journal of the Electrochemical Society ,1996, 143(12):3825-3829. [119] Richard M N,Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental[J]. Journal of the Electrochemical Society ,1999, 146(6):2068-2077. [120] Richard M N,Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte II. Modeling the results and predicting differential scanning calorimeter curves[J]. Journal of the Electrochemical Society , 1999,146(6):2078-2084. [121] Richard M N,Dahn J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources ,1999,79(2):135-142. [122] Richard M N,Dahn J R. Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte[J]. Journal of Power Sources ,1999,83(1-2):71-74. [123] Xianming W,Yasukawa E,Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of the Electrochemical Society ,2001,148(10):A1058-A1065. [124] Xianming W,Yasukawa E,Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:II. The use of an amorphous carbon anode[J]. Journal of the Electrochemical Society ,2001,148(10):A1066-A1071. [125] Yamaki J,Tanaka T,Ihara M, et al . Thermal stability of methyl difluoroacetate as a novel electrolyte solvent for lithium batteries electrolytes[J]. Electrochemistry ,2003,71(12):1154-1156. [126] Yamaki J I,Yamazaki I,Egashira M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources ,2001,102(1-2):288-293. [127] Buhrmester C,Chen J,Moshurchak L, et al . Studies of aromatic redox shuttle additives for LiFePO 4 -based Li-ion cells[J]. Journal of the Electrochemical Society ,2005,152(12):A2390-A2399. [128] Chen J,Buhrmester C,Dahn J R. Chemical overcharge and overdischarge protection for lithium-ion batteries[J]. Electrochemical and Solid State Letters ,2005,8(1):A59-A62. [129] Shima K,Ue M,Yamaki J. Redox mediator as an overcharge protection agent for 4 V class lithium-ion rechargeable cells[J]. Electrochemistry ,2003,71(12):1231-1235. [130] Tobishima S,Ogino Y,Watanabe Y. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells[J]. Journal of Applied Electrochemistry ,2003,33(2):143-150. [131] Guoying C,Richardson T J. Overcharge protection for rechargeable lithium batteries using electroactive polymers[J]. Electrochemical and Solid-State Letters ,2004,7(2): A23-A26. [132] Adachi M,Tanaka K,Sekai K. Aromatic compounds as redox shuttle additives for 4 V class secondary lithium batteries[J]. Journal of the Electrochemical Society ,1999,146(4): 1256-1261. [133] Abraham K M,Pasquariello D M,Willstaedt E B. Normal-butylferrocene for overcharge protection of secondary lithium batteries[J]. Journal of the Electrochemical Society , 1990,137(6):1856-1857. [134] Xiao L F,Ai X P,Cao Y L, et al . Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta ,2004,49(24): 4189-4196. [135] Barker J,Stux A M. Electrolytic cells containing additives for inhibiting the decomposition of lithium salts:Comprising anode,cathode and electrolyte containing a lithium salt,a solvent and a carbonate additive,and useful for non-aqueous batteries:US,5707760-A[P/OL]. 1998-01-13. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=US&PN=5707760&DT=A&SrcAuth=Wila&Token=toT09zn_.SGVVvH8NEzjcm9b.HOX24bOxhaZbBuQhcmzf9SDtCiZv4wSJuf12naVPpV9BN1vmaxSQ1GyP3hs199AM K0vc.Gjt739pVLa38A. [136] Inventor U. Electrolyte used for lithium ion battery, comprises specified amount of lithium salt, organic solvent and additive:CN,102324563-A[P/OL]. 2012-01-18. http://www.google.com/patents/ CN102324563A?cl=zh. [137] Shang Z,Yang H,Hou H, et al . Electrolyte comprises lithium hexafluorophosphate, mixed solvent comprising diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, ethylene carbonate and propylene carbonate, and additive:CN,103107358-A[P/OL]. 2013-05-15. http://www.google.com/patents/CN103107358A?cl=zh. [138] Chalasani D,Li J,Jackson N M, et al . Methylene ethylene carbonate:Novel additive to improve the high temperature performance of lithium ion batteries[J]. Journal of Power Sources , 2012,208:67-73. [139] Liu B X,Li B,Guan S Y. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters ,2012,15(6): A77-A79. [140] Liao L,Zuo P,Ma Y, et al . Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode[J]. Electrochimica Acta ,2012,74:260-266. [141] Bian F,Zhang Z,Yang Y. Effects of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Journal of Electrochemistry ,2013,19(4):355-360. [142] Liao L,Cheng X,Ma Y, et al . Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO 4 electrode[J]. Electrochimica Acta ,2013,87:466-472. [143] Xiang R,Li F,Jia G, et al . Effects of FEC additive on the low temperature performance of LiODFB-based lithium-ion batteries[J]. Applied Energy Technology ,2013,724:1025-1028. [144] Tsujioka S,Takase H,Takahashi M, et al . Electrolyte for electrochemical device such as lithium cell and electrical double-layer capacitor,comprises ionic metal complex:EP,1195834-A2; US,2002081496-A1; JP,2002184460-A; JP,2002184465-A; JP,2002110235-A; JP,2002373703-A; US,6783896-B2; JP,3722685-B2; JP,3730860-B2; JP,3730861-B2; JP,4076738-B2; EP,1195834-B1; DE,60143070-E [P/OL]. 2002-04-10. http://www.google.com/patents/EP1195834A2?cl=en. [145] Tsujioka S,Takase H,Takahashi M, et al . Electrolyte for electrochemical devices,comprises ionic metal complex,and specific ionic compound(s):US,2002061450-A1; JP,2002164082-A; JP,2002164083-A; JP,2003068359-A; US,6787267-B2; JP,3730855-B2; JP,3730856-B2; JP,4076748-B2 [P/OL]. 2002-05-23. http://www.thomsonpatentstore.net/portal/servlet/DIIDirect?CC=US&PN=2002061450&DT=A1&SrcAuth=Wila&Token=toT09zn_.SGtruRdL2_HB1ySfIKpulpMOuDg_fQd..8DT_V8owJlKu3_Ruvqdqda2lLM2THVjbrCTxrFhSyhKUPP_jSq2gZv3EFfL2jT4f0. [146] Chen X,Wang N,Xia H, et al . Non-aqueous electrolyte battery, has non-aqueous electrolyte provided with solvent, additive and electrolyte that is made of lithium hexafluorophosphate, where additive is biphenyl, vinyl acetate, divinyl adipate or vinylene carbonate:CN,102280662-A [P/OL]. 2011-12-14. http://www.google.com/patents/ CN102280662A?cl=zh. [147] Choi S J,Lee M S,Jeong C S, et al . Additive, useful in non-aqueous electrolyte for overcharge prevention of secondary battery, comprises terphenyl derivative e.g. o-terphenyl, and xylene derivative e.g. bromoxylene:EP,2523247-A1; US,2012288752-A1; KR,2012126305-A; JP,2012238595-A; CN,102780036-A[P/OL]. 2012-11-14. http://www.google.com/patents/CN102780036A?cl=en. [148] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources ,2006,162(2): 1379-1394. [149] Blanchard L A,Hancu D,Beckman E J, et al . Green processing using ionic liquids and CO 2 [J]. Nature ,1999,399(6731): 28-29. [150] Huddleston J G,Willauer H D,Swatloski R P, et al . Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction[J]. Chemical Communications ,1998,16:1765-1766. [151] Welton T. Room-temperature ionic liquids, solvents for synthesis and catalysis[J]. Chem. Rev. ,1999,99(8):2071-2083. [152] Tait S,Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity[J]. Inorganic Chemistry ,1984,23(25):4352-4360. [153] Liu Jianlian(刘建连). Study on synthesis and characterization of typical N,N ' -dialkylimidazolium-based ionic liquids[D]. Xi , an:Northwest University,2006. [154] Galinski M,Lewandowski A,Stepniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta ,2006,51(26):5567-5580. [155] Garcia B,Lavallee S,Perron G, et al . Room temperature molten salts as lithium battery electrolyte[J]. Electrochimica Acta ,2004, 49(26):4583-4588. [156] Matsumoto H,Sakaebe H,Tatsumi K, et al . Fast cycling of Li/LiCoO 2 cell with low-viscosity ionic liquids based on bis (fluorosulfonyl) imide FSI[J]. Journal of Power Sources ,2006, 160(2):1308-1313. [157] Sakaebe H,Matsumoto H. N -Methyl- N -propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP 13-TFSI)-novel electrolyte base for Li battery[J]. Electrochemistry Communications ,2003, 5(7):594-598. [158] Armand M,Endres F,Macfarlane D R, et al . Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials ,2009,8(8):621-629. [159] Lewandowski A,Swiderska M A. Ionic liquids as electrolytes for Li-ion batteries:An overview of electrochemical studies[J]. Journal of Power Sources ,2009,194(2):601-609. [160] Nakagawa H,Izuchi S,Kuwana K, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt[J]. Journal of the Electrochemical Society |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||