储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1283-1294.doi: 10.19799/j.cnki.2095-4239.2022.0740
杨妮1(), 苏岳锋1,2(), 王联1, 李宁1,2, 马亮2, 朱晨3
收稿日期:
2022-12-12
修回日期:
2023-01-01
出版日期:
2023-04-05
发布日期:
2023-01-30
通讯作者:
苏岳锋
E-mail:yangni_bitcit@163.com;suyuefeng@bit.edu.cn
作者简介:
杨妮(1992—),女,硕士,工程师,研究方向为锂离子电池失效分析,E-mail:yangni_bitcit@163.com;
基金资助:
Ni YANG1(), Yuefeng SU1,2(), Lian WANG1, Ning LI1,2, Liang MA2, Chen ZHU3
Received:
2022-12-12
Revised:
2023-01-01
Online:
2023-04-05
Published:
2023-01-30
Contact:
Yuefeng SU
E-mail:yangni_bitcit@163.com;suyuefeng@bit.edu.cn
摘要:
电极材料作为锂离子电池的关键结构组成部分,其结构稳定性直接决定着锂离子电池的电化学性能。由于电极材料具有对空气、水分敏感,不耐电子束辐照等特性,且在充放电过程中,电极本身及其所处化学环境不断变化,表征其微观组织形貌和结构具有挑战性。聚焦离子束-扫描电子显微镜作为重要的微纳米尺度精细加工设备,是制备透射样品的重要手段,已广泛应用于半导体、生物等领域。本文通过对近年来相关文献的探讨,综述了聚焦离子束基于锂离子电池领域的解决方案,着重阐述了聚焦离子束在三维重构、冷冻加工、构建单颗粒电池方面的最新进展,采用三维重构技术可以获取电极材料中的孔隙网络、多相结构、体积变化等三维特征信息,进行定量评估,建立微观结构模型对电池性能进行预测。基于冷冻加工技术,将液态电解质、Li金属等束流敏感材料冷冻,保持其原始形貌和化学性质,可以有效表征Li金属阳极以及固液界面的本征信息。构建单颗粒微型电池可以实现原位观察单粒子循环过程中的微观结构演化,避免黏结剂、导电添加物等对材料本征性能的影响,确定电极材料的内在特性。本文详细介绍了聚焦离子束在这3个方面的加工过程,并分析加工过程中存在的不足,提出目前面临的主要挑战。本文从锂离子电池材料特性和聚焦离子束实验方法出发,为该领域科研人员提供便利。
中图分类号:
杨妮, 苏岳锋, 王联, 李宁, 马亮, 朱晨. 聚焦离子束显微镜技术在锂离子电池领域的研究进展[J]. 储能科学与技术, 2023, 12(4): 1283-1294.
Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294.
1 | WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1/2): 58-64. |
2 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
3 | 牟粤, 杜韫, 明海, 等. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
MU Y, DU Y, MING H, et al. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. | |
4 | GIANNUZZI L A, STEVIE F A. Introduction to focused ion beams: Instrumentation, theory, techniques and practice[M]. Boston, MA: Springer US, 2005. |
5 | 顾文琪, 马向国, 李文萍. 聚焦离子束微纳加工技术[M]. 北京: 北京工业大学出版社, 2006: 15. |
GU W Q, MA X G, LI W P. Micro-nano processing technology of focused ion beam[M]. Beijing: Beijing University of Technology Press, 2006: 15. | |
6 | YAO N. Focused ion beam systems: Basics and applications[M]. Cambridge: Cambridge University Press, 2007. |
7 | MAIR G L R. Liquid metal ion sources and their applications[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 114(1/2): 1-21. |
8 | HORNSEY R. Simulations of the current and temperature dependence of liquid metal ion source energy distributions[J]. Japanese Journal of Applied Physics, 1991, 30(2R): 366. |
9 | MITTERAUER J. Miniaturized liquid metal ion sources (MILMIS)[J]. IEEE Transactions on Plasma Science, 1991, 19(5): 790-799. |
10 | BISCHOFF L, MAZAROV P, BRUCHHAUS L, et al. Liquid metal alloy ion sources—An alternative for focussed ion beam technology[J]. Applied Physics Reviews, 2016, 3(2): 021101. |
11 | 韩伟, 肖思群. 聚焦离子束(FIB)及其应用[J]. 中国材料进展, 2013, 32(12): 716-727, 751. |
HAN W, XIAO S Q. Focused ion beam (FIB) and its applications[J]. Materials China, 2013, 32(12): 716-727, 751. | |
12 | SONG S C, LI Y W, YANG K, et al. Interplay between multiple doping elements in high-voltage LiCoO2[J]. Journal of Materials Chemistry A, 2021, 9(9): 5702-5710. |
13 | ALMAR L, JOOS J, WEBER A, et al. Microstructural feature analysis of commercial Li-ion battery cathodes by focused ion beam tomography[J]. Journal of Power Sources, 2019, 427: 1-14. |
14 | BESNARD N, ETIEMBLE A, DOUILLARD T, et al. Lithium-ion batteries: Multiscale morphological and electrical characterization of charge transport limitations to the power performance of positive electrode blends for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8): doi: 10.1002/aenm.201770043. |
15 | SAILER S, MUNDSZINGER M, MARTIN J, et al. Quantitative FIB/SEM tomogram analysis of closed and open porosity of spheroidized graphite anode materials for LiBs applications[J]. Micron, 2023, 166: doi: 10.1016/j.micron.2022.103398. |
16 | KIM D, LEE S, HONG W, et al. Image segmentation for FIB-SEM serial sectioning of a Si/C-graphite composite anode microstructure based on preprocessing and global thresholding[J]. Microscopy and Microanalysis, 2019, 25(5): 1139-1154. |
17 | KROLL M, KARSTENS S L, CRONAU M, et al. Three-phase reconstruction reveals how the microscopic structure of the carbon-binder domain affects ion transport in lithium-ion batteries[J]. Batteries & Supercaps, 2021, 4(8): 1363-1373. |
18 | SUN Y K, YUAN Y B, LU L G, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J]. eTransportation, 2022, 13: doi: 10.1016/j.etran.2022.100183. |
19 | VANPEENE V, SOUCY P, XIONG J H, et al. Sequential focused ion beam scanning electron microscopy analyses for monitoring cycled-induced morphological evolution in battery composite electrodes. Silicon-graphite electrode as exemplary case[J]. Journal of Power Sources, 2021, 498: doi: 10.1016/j.jpowsour.2021.229904 |
20 | WIEDEMANN A H, GOLDIN G M, BARNETT S A, et al. Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes[J]. Electrochimica Acta, 2013, 88: 580-588. |
21 | ALLEN J M, WEDDLE P J, VERMA A, et al. Quantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230415. |
22 | WU L M, WEN Y H, ZHANG J. Three-dimensional finite element study on Li diffusion induced stress in FIB-SEM reconstructed LiCoO2 half cell[J]. Electrochimica Acta, 2016, 222: 814-820. |
23 | XU H Y, ZHU J E, FINEGAN D P, et al. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: Microscopic imaging, predictive modeling, and machine learning[J]. Advanced Energy Materials, 2021, 11(19): doi: 10.1016/aenm.2021.2003908. |
24 | SHIN S, KIM H, MAIYALAGAN T, et al. Sophisticated 3D microstructural reconstruction for numerical analysis of electrolyte imbibition in Li-ion battery separator and anode[J]. Materials Science and Engineering: B, 2022, 284: doi: 10.1016/j.mseb.2022.115878. |
25 | LAGADEC M F, ZAHN R, WOOD V. Designing polyolefin separators to minimize the impact of local compressive stresses on lithium ion battery performance[J]. Journal of the Electrochemical Society, 2018, 165(9): A1829-A1836. |
26 | PAN Z X, ZHU J E, XU H Y, et al. Microstructural deformation patterns of a highly orthotropic polypropylene separator of lithium-ion batteries: Mechanism, model, and theory[J]. Extreme Mechanics Letters, 2020, 37: doi: 10.1016/j.eml.2020.100705. |
27 | ZHANG Z Y, WANG X R, BAI Y, et al. Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: Promises and challenges[J]. Green Energy & Environment, 2022, 7(4): 606-635. |
28 | WU Y, FENG X N, LIU X, et al. In-built ultraconformal interphases enable high-safety practical lithium batteries[J]. Energy Storage Materials, 2021, 43: 248-257. |
29 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
30 | WANG X F, ZHANG M H, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612. |
31 | CHENG D Y, LU B Y, RAGHAVENDRAN G, et al. Leveraging cryogenic electron microscopy for advancing battery design[J]. Matter, 2022, 5(1): 26-42. |
32 | LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2): 489-493. |
33 | YANG Y, DAVIES D M, YIN Y J, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. |
34 | YANG Y, YIN Y J, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(7): 2209-2219. |
35 | CHENG D Y, WYNN T A, WANG X F, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. |
36 | ASENATH-SMITH E, HOVDEN R, KOURKOUTIS L F, et al. Hierarchically structured hematite architectures achieved by growth in a silica hydrogel[J]. Journal of the American Chemical Society, 2015, 137(15): 5184-5192. |
37 | ASENATH-SMITH E, LI H Y, KEENE E C, et al. Crystal growth of calcium carbonate in hydrogels as a model of biomineralization[J]. Advanced Functional Materials, 2012, 22(14): 2891-2914. |
38 | ASENATH-SMITH E, ESTROFF L A. Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel[J]. Crystal Growth & Design, 2015, 15(7): 3388-3398. |
39 | ZACHMAN M J, ASENATH-SMITH E, ESTROFF L A, et al. Site-specific preparation of intact solid-liquid interfaces by label-free in situ localization and cryo-focused ion beam lift-out[J]. Microscopy and Microanalysis, 2016, 22(6): 1338-1349. |
40 | ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
41 | SASAKI T, GODBOLE V, TAKEUCHI Y, et al. Morphological and structural changes of Mg-substituted Li(Ni, Co, Al)O2 during overcharge reaction[J]. Journal of the Electrochemical Society, 2011, 158(11): A1214. |
42 | YOON W S, CHUNG K Y, MCBREEN J, et al. Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy[J]. Journal of Power Sources, 2007, 174(2): 1015-1020. |
43 | LEWANDOWSKI A, ŚWIDERSKA-MOCEK A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies[J]. Journal of Power Sources, 2009, 194(2): 601-609. |
44 | MILLER D, PROFF C, WEN J, et al. Direct observation of microstructural evolution in Li battery cathode oxide particles during electrochemical cycling by in situ electron microscopy[J]. Microscopy and Microanalysis, 2012, 18(S2): 1108-1109. |
45 | ZHOU X W, LI T Y, CUI Y, et al. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 1733-1738. |
46 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
47 | TOJO T, KAWASHIRI S, TSUDA T, et al. Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode[J]. Journal of Electroanalytical Chemistry, 2019, 836: 24-29. |
48 | INADA R, KUMASAKA R, INABE S, et al. Li+ Insertion/extraction properties for TiNb2O7 single particle characterized by a particle-current collector integrated microelectrode[J]. Journal of the Electrochemical Society, 2018, 166(3): A5157-A5162. |
49 | YOJI S, SHUHEI K, MASAHIRO U, et al. Electrochemical characterization of Li4Ti5O12 by single particle measurements using a particle-current collector integrated microelectrode[J]. Meeting Abstracts, 2015, (6): 496. |
50 | SUI T, SONG B H, DLUHOS J, et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy, 2015, 17: 254-260. |
51 | SCIPIONI R, ISHEIM D, BARNETT S A. Revealing the complex layered-mosaic structure of the cathode electrolyte interphase in Li-ion batteries[J]. Applied Materials Today, 2020, 20: doi: 10.1016/j.apmt.2020.100748. |
[1] | 管敏渊, 沈建良, 徐国华, 汤舜, 张炜鑫, 曹元成. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. |
[2] | 宋缙华, 张兴浩, 丰震河, 程广玉, 顾洪汇, 顾海涛, 王可. 基于原位参比的氧化亚硅-石墨复合负极循环衰减机制[J]. 储能科学与技术, 2023, 12(4): 1059-1065. |
[3] | 胡力月, 姚行艳. 基于正交试验的锂离子电池热失控仿真[J]. 储能科学与技术, 2023, 12(4): 1268-1277. |
[4] | 刘峰, 陈海忠. 基于CEEMDAN和ISOA-ELM的锂电池荷电状态预测[J]. 储能科学与技术, 2023, 12(4): 1244-1256. |
[5] | 王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222. |
[6] | 翟智, 王福金, 邸一, 马珮羽, 赵志斌, 陈雪峰. 基于分层对齐迁移学习的锂离子电池容量估计[J]. 储能科学与技术, 2023, 12(4): 1223-1233. |
[7] | 赵立禹, 孙桓五, 刘世闯, 闫志远. 重卡辅助动力电池加热系统能耗对比及优化[J]. 储能科学与技术, 2023, 12(4): 1139-1147. |
[8] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[9] | 李奇松, 陈荣, 李慧芳. 阻抗分析法在锂离子电池析锂阈值检测中的应用[J]. 储能科学与技术, 2023, 12(4): 1278-1282. |
[10] | 董渊昌, 庞晓琼, 贾建芳, 史元浩, 温杰, 李笑, 张鑫. 基于SVD-SAE-GPR的锂离子电池RUL预测[J]. 储能科学与技术, 2023, 12(4): 1257-1267. |
[11] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
[12] | 常修亮, 李希超, 贾隆舟, 韦守李, 王敬豪, 戴作强, 郑莉莉. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. |
[13] | 李奎杰, 楼平, 管敏渊, 莫金龙, 张炜鑫, 曹元成, 程时杰. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
[14] | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
[15] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||