储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1283-1294.doi: 10.19799/j.cnki.2095-4239.2022.0740

• 储能测试与评价 • 上一篇    下一篇

聚焦离子束显微镜技术在锂离子电池领域的研究进展

杨妮1(), 苏岳锋1,2(), 王联1, 李宁1,2, 马亮2, 朱晨3   

  1. 1.北京理工大学重庆创新中心,重庆 404100
    2.北京理工大学,北京 100190
    3.北京大学,北京 100871
  • 收稿日期:2022-12-12 修回日期:2023-01-01 出版日期:2023-04-05 发布日期:2023-01-30
  • 通讯作者: 苏岳锋 E-mail:yangni_bitcit@163.com;suyuefeng@bit.edu.cn
  • 作者简介:杨妮(1992—),女,硕士,工程师,研究方向为锂离子电池失效分析,E-mail:yangni_bitcit@163.com
  • 基金资助:
    国家重点研发计划(2021YFC2902905);国家自然科学基金(22109010);重庆英才青年拔尖人才计划(CQYC202005032)

Research progress of focused ion beam microscopy in lithium-ion batteries

Ni YANG1(), Yuefeng SU1,2(), Lian WANG1, Ning LI1,2, Liang MA2, Chen ZHU3   

  1. 1.Beijing Institute of Technology Chongqing Innovation Center, Chongqing 404100, China
    2.Beijing Institute of Technology, Beijing 100190, China
    3.Peking University, Beijing 100871, China
  • Received:2022-12-12 Revised:2023-01-01 Online:2023-04-05 Published:2023-01-30
  • Contact: Yuefeng SU E-mail:yangni_bitcit@163.com;suyuefeng@bit.edu.cn

摘要:

电极材料作为锂离子电池的关键结构组成部分,其结构稳定性直接决定着锂离子电池的电化学性能。由于电极材料具有对空气、水分敏感,不耐电子束辐照等特性,且在充放电过程中,电极本身及其所处化学环境不断变化,表征其微观组织形貌和结构具有挑战性。聚焦离子束-扫描电子显微镜作为重要的微纳米尺度精细加工设备,是制备透射样品的重要手段,已广泛应用于半导体、生物等领域。本文通过对近年来相关文献的探讨,综述了聚焦离子束基于锂离子电池领域的解决方案,着重阐述了聚焦离子束在三维重构、冷冻加工、构建单颗粒电池方面的最新进展,采用三维重构技术可以获取电极材料中的孔隙网络、多相结构、体积变化等三维特征信息,进行定量评估,建立微观结构模型对电池性能进行预测。基于冷冻加工技术,将液态电解质、Li金属等束流敏感材料冷冻,保持其原始形貌和化学性质,可以有效表征Li金属阳极以及固液界面的本征信息。构建单颗粒微型电池可以实现原位观察单粒子循环过程中的微观结构演化,避免黏结剂、导电添加物等对材料本征性能的影响,确定电极材料的内在特性。本文详细介绍了聚焦离子束在这3个方面的加工过程,并分析加工过程中存在的不足,提出目前面临的主要挑战。本文从锂离子电池材料特性和聚焦离子束实验方法出发,为该领域科研人员提供便利。

关键词: 锂离子电池, 聚焦离子束, 三维重构, 冷冻加工技术

Abstract:

Electrode materials are the key structural components of lithium-ion batteries, and their structural stability directly determines the electrochemical performance of lithium-ion batteries. Nevertheless, it is challenging to characterize their microstructure and structure since the electrode materials are sensitive to air and moisture, not resistant to electron beam irradiation, and the electrode itself and its chemical environment are constantly changing during the charging and discharging process. Focused ion beam-scanning electron microscope is an important means of preparing transmission samples and has been widely used in semiconductor, biology, and other fields. Based on the discussion of related literature in recent years, this paper summarizes the solutions of focused ion beams in the field of lithium-ion batteries, focusing on the latest progress of focused ion beams in three-dimensional (3D) reconstruction, freezing processing, the construction of single-particle batteries. 3D reconstruction technology can obtain 3D characteristic information on pore networks, multi-phase structure, and volume change in electrode materials; perform a quantitative evaluation; and establish a microstructure model to predict battery performance. Based on cryogenic processing technology, the liquid electrolyte, Li metal, and other beam-sensitive materials are frozen to maintain their original morphology and chemical properties, which can effectively characterize the intrinsic information of the Li metal anode and solid-liquid interface. The construction of a single-particle microbattery can realize the in situ observation of microstructure evolution during a single-particle cycle; avoid the influence of binders, conductive additives, etc. on the intrinsic properties of the material; and determine the intrinsic characteristics of the electrode material. Thus, this paper introduces the processing process of focused ion beam, analyzes the shortcomings in the processing process, and presents the associated challenges. The findings of this article provides insights for researchers based on the characteristics of lithium-ion battery materials and focused ion beam experimental methods.

Key words: lithium-ion battery, focused ion beam-scanning electron microscope, 3D reconstruction, cryogenic processing

中图分类号: