1 |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
|
|
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
|
2 |
LI Z X, AL-RASHED A A A A, ROSTAMZADEH M, et al. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM[J]. Energy Conversion and Management, 2019, 195: 43-56.
|
3 |
QU Z G, LI W Q, WANG J L, et al. Passive thermal management using metal foam saturated with phase change material in a heat sink[J]. International Communications in Heat and Mass Transfer, 2012, 39(10): 1546-1549.
|
4 |
薛洁, 张军, 杜昭, 等. 新型平底型相变蓄热器蓄热性能的数值模拟[J]. 储能科学与技术, 2022, 11(12): 3855-3861.
|
|
XUE J, ZHANG J, DU Z, et al. Numerical simulation of heat storage performance of a new flat-bottomed phase change heat accumulator[J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861.
|
5 |
YAN S R, ALI FAZILATI M, SAMANI N, et al. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101445.
|
6 |
QU Z G, LI W Q, TAO W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913.
|
7 |
MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Applied Energy, 2017, 191: 22-34.
|
8 |
KAMKARI B, SHOKOUHMAND H. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851.
|
9 |
YANG X H, WANG X Y, LIU Z, et al. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam[J]. International Communications in Heat and Mass Transfer, 2021, 122: doi: 10.1016/j.icheatmasstransfer.2021.105127.
|
10 |
程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744.
|
|
CHENG W L, WEI W J. Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica, 2007, 28(7): 739-744.
|
11 |
ZHANG Z Q, HE X D. Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient[J]. Applied Thermal Engineering, 2017, 113: 298-308.
|
12 |
XU Y, REN Q L, ZHENG Z J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95.
|
13 |
JOSHI V, RATHOD M K. Thermal transport augmentation in latent heat thermal energy storage system by partially filled metal foam: A novel configuration[J]. Journal of Energy Storage, 2019, 22: 270-282.
|
14 |
YANG X H, WANG W B, YANG C, et al. Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 60-69.
|
15 |
宋瀚文, 王子龙, 闫勤学, 等. 石蜡-泡沫铜复合相变蓄热材料热特性的研究[J]. 功能材料, 2021, 52(6): 6102-6109.
|
|
SONG H W, WANG Z L, YAN Q X, et al. Study on thermal characteristics ofparaffin/metal foam composite PCMs[J]. Journal of Functional Materials, 2021, 52(6): 6102-6109.
|
16 |
HU X S, GONG X L. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure[J]. Applied Thermal Engineering, 2019, 151: 231-239.
|
17 |
HU X S, ZHU F, GONG X L. Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101005.
|
18 |
ZHENG Z J, YANG C, XU Y, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity[J]. Renewable Energy, 2021, 172: 802-815.
|
19 |
DUAN J. The PCM-porous system used to cool the inclined PV panel[J]. Renewable Energy, 2021, 180: 1315-1332.
|
20 |
VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
|
21 |
BHATTACHARYA A, CALMIDI V V, MAHAJAN R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
|
22 |
BECKERMANN C, VISKANTA R. Natural convection solid/liquid phase change in porous media[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 35-46.
|
23 |
KRISHNAN S, MURTHY J Y, GARIMELLA S V. A two-temperature model for the analysis of passive thermal control systems[J]. Journal of Heat Transfer, 2004, 126(4): 628-637.
|
24 |
XU Y, LI M J, ZHENG Z J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880.
|