储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1364-1379.doi: 10.19799/j.cnki.2095-4239.2023.0258

• 喜迎东北大学建校百年-储能电池关键材料与循环技术专刊 • 上一篇    下一篇

钾离子电池锰基层状氧化物正极的研究进展

韩文哲(), 赖青松, 高宣雯(), 骆文彬   

  1. 东北大学冶金学院,辽宁 沈阳 110167
  • 收稿日期:2023-04-23 修回日期:2023-05-06 出版日期:2023-05-05 发布日期:2023-05-29
  • 通讯作者: 高宣雯 E-mail:2171581@stu.neu.edu.cn;gaoxuanwen@smm.neu.edu.cn
  • 作者简介:韩文哲(1999—),男,硕士研究生,研究方向为电池正极材料,E-mail:2171581@stu.neu.edu.cn
  • 基金资助:
    “兴辽英才”青年拔尖(基金号:XLYC2007155),中央高校基本科研业务费(N2025009)

Advances toward manganese-based layered oxide cathodes for potassium-ion batteries

Wenzhe HAN(), Qingsong LAI, Xuanwen GAO(), Wenbin LUO   

  1. School of Metallurgy, Northeastern University, Shenyang 110167, Liaoning, China
  • Received:2023-04-23 Revised:2023-05-06 Online:2023-05-05 Published:2023-05-29
  • Contact: Xuanwen GAO E-mail:2171581@stu.neu.edu.cn;gaoxuanwen@smm.neu.edu.cn

摘要:

可再生能源替代传统化石燃料的研究推动了电能存储系统的发展。随着对规模储能的需求不断增加,钾离子电池(PIBs)因其成本低廉、元素丰度高、理论工作电压高以及电解液中K+卓越的传输动力学,在未来将成为商用锂离子电池的补充或替代品。电极材料的发展深刻影响电池的电化学性能。石墨作为钾离子电池负极展现出了优异的循环稳定性,然而,找到具有快速的传输动力学和稳定的框架结构来嵌入/脱嵌大尺寸K+的正极材料是钾离子电池面临的主要挑战。层状过渡金属氧化物因其结构稳定、合成过程简单及价格低廉等优点而具有广阔的应用前景。本文介绍了钾含量和合成温度等对过渡金属层状氧化物晶体结构的影响,并说明了各种晶体结构在脱钾过程中的结构演变和容量损失机理;在此基础上,提出了针对不同晶体结构的锰基过渡金属层状氧化物的改性方法以提高其电化学性能;最后,对新型过渡金属层状氧化物正极的主要研究方向和研究热点进行了预测,以指导未来钾离子电池正极材料的发展。

关键词: 失效机理, 元素掺杂, 表面包覆, 钾离子电池,层状过渡金属氧化物

Abstract:

Rapid exploitation of renewable energy sources to replace conventional fossil fuels drives the development of electrical energy storage systems. With the increasing demand for grid-scale energy storage systems, potassium-ion batteries (PIBs) have emerged as a promising alternative to commercial lithium-ion batteries owing to their low cost, natural abundance of potassium resources, low standard reduction potential of potassium, and fascinating transport kinetics of the K+ ions in the electrolyte. Owing to the high abundance of potassium and their low cost, PIBs have considerable advantages in secondary battery energy storage systems. The main challenge in the commercialization of PIBs is finding suitable cathode materials with fast transport kinetics and stable framework structures to intercalate/de-intercalate large-size K+ ions. Transition metal layered oxides have excellent potential and have been extensively investigated as cathode materials for PIBs because of their stable skeleton structure, simple synthetic chemistry, and low cost. In this paper, the effects of the potassium content and synthesis temperature on the crystal structure of transition metal layered oxides are introduced and the structural evolution and capacity loss mechanisms of various crystal structures during potassium removal are explained. Furthermore, modification methods for Mn-based transition metal layered oxides with different crystal structures are proposed to improve their electrochemical properties. Finally, the main research directions for novel transition metal layered oxide cathodes are discussed to provide guidelines for the development of advanced PIBs.

Key words: failure mechanism, element doping, surface coating, PIBs, layered transition metal oxides

中图分类号: