1 |
WANG Q Y, LIU B, SHEN Y H, et al. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): e2101111.
|
2 |
GHAZI Z A, SUN Z H, SUN C G, et al. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15(32): e1900687.
|
3 |
史冬梅, 邱俊, 王晶. 美国先进电池领域发展态势及启示[J]. 储能科学与技术, 2022, 11(9): 2933-2943.
|
|
SHI D M, QIU J, WANG J. Development of advanced battery technologies and industries in the United States[J]. Energy Storage Science and Technology, 2022, 11(9): 2933-2943.
|
4 |
JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): 174710.
|
5 |
LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
|
6 |
唐亮, 尹小波, 吴候福, 等. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652.
|
|
TANG L, YIN X B, WU H F, et al. Demand for safety standards in the development of the electrochemical energy storage industry[J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652.
|
7 |
YANG C P, FU K, ZHANG Y, et al. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Advanced Materials, 2017, 29(36): 1701169.
|
8 |
HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174.
|
9 |
LUO Z, QIU X J, LIU C, et al. Interfacial challenges towards stable Li metal anode[J]. Nano Energy, 2021, 79: 105507.
|
10 |
LIU Y C, GAO D, XIANG H F, et al. Research progress on copper-based current collector for lithium metal batteries[J]. Energy & Fuels, 2021, 35(16): 12921-12937.
|
11 |
LIU X E, LIU J A, LI G R, et al. Dimensionally stable composite Li electrode with Cu skeleton and lithophilic Li-Mg alloy microstructure[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56801-56807.
|
12 |
MAO J T, WU K S, NI C K, et al. Enablement of long-lifespan lithium metal battery via building 3D LixGey alloy framework[J]. ElectrochimicaActa, 2021, 382: 138301.
|
13 |
JING W T, ZOU K Y, DAI X, et al. Li-Indium alloy anode for high-performance Li-metal batteries[J]. Journal of Alloys and Compounds, 2022, 924: 166517.
|
14 |
WANG Y Y, WANG M, ZHONG J A, et al. Constructing three-dimensional flexible lithiophilic scaffolds with Bi2O3nanosheets toward stable Li metal anodes[J]. ACS Applied Energy Materials, 2022, 5(10): 12874-12883.
|
15 |
LUO S T, WANG Z Y, LI X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: 6968.
|
16 |
XU Y, ZHENG H Q, YANG H, et al. Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries[J]. Nano Letters, 2021, 21(20): 8664-8670.
|
17 |
郭凯强, 车海英, 张浩然, 等. B2O3包覆NaNi1/3Fe1/3Mn1/3O2正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988.
|
|
GUO K Q, CHE H Y, ZHANG H R, et al. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988.
|
18 |
WANG S H, YUE J P, DONG W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes[J]. Nature Communications, 2019, 10: 4930.
|
19 |
HAN J H, LI C, LU Z, et al. Vapor phase dealloying: A versatile approach for fabricating 3D porous materials[J]. ActaMaterialia, 2019, 163: 161-172.
|
20 |
YAKOVENKO O, SOKOLSKII V, GOLOVATAYA N, et al. Preparation of porous Cu material using vapor phase dealloying[J]. Materials Letters, 2023, 331: 133486.
|
21 |
CAO J Q, QIAN G Y, LU X Y, et al. Advanced composite lithium metal anodes with 3D frameworks: Preloading strategies, interfacial optimization, and perspectives[J]. Small, 2023, 19(10): 2205653.
|
22 |
申晓宇, 朱璟, 岑官骏, 等. 锂电池百篇论文点评(2022. 12. 1—2023. 1. 31)[J]. 储能科学与技术, 2023, 12(3): 639-653.
|
|
SHEN X Y, ZHU J, CEN G J, et al. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(3): 639-653.
|
23 |
王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-344.
|
|
WANG Q Y, CHU G, ZHANG J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2): 327-344.
|
24 |
王津, 张少飞, 孙金峰, 等. 纳米多孔合金快速燃烧氧化及高效储能研究[J]. 储能科学与技术, 2023, 12(5): 1480-1489.
|
|
WANG J, ZHANG S F, SUN J F, et al. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance[J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489.
|
25 |
ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298~2500 K[J]. Canadian Metallurgical Quarterly, 1984, 23(3): 309-313.
|
26 |
BAJER J, ZAUNSCHIRM S, PLANK B, et al. Kirkendall effect in twin-roll cast AA 3003 aluminum alloy[J]. Crystals, 2022, 12(5): 607.
|
27 |
PARK J B, CHOI C, YU S, et al. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate[J]. Advanced Energy Materials, 2021, 11(37): 2101544.
|
28 |
CHI S S, WANG Q R, HAN B, et al. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition[J]. Nano Letters, 2020, 20(4): 2724-2732.
|
29 |
YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
|
30 |
WU J Y, JU Z Y, ZHANG X A, et al. Building efficient ion pathway in highly densified thick electrodes with high gravimetric and volumetric energy densities[J]. Nano Letters, 2021, 21(21): 9339-9346.
|
31 |
FAN Y C, LIAO J P, LUO D X, et al. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal, 2023, 453: 139903.
|
32 |
凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4): 732-749.
|
|
LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 732-749.
|
33 |
ABDUL AHAD S, ADEGOKE T E, RYAN K M, et al. Cu current collector with binder-free lithiophilic nanowire coating for high energy density lithium metal batteries[J]. Small, 2023, 19(20): 2207902.
|
34 |
FU X L, SHANG C Q, ZHOU G F, et al. Lithiophilic Sb surface modified Cu nanowires grown on Cu foam: A synergistic 1D@3D hierarchical structure for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(44): 24963-24970.
|
35 |
ZHANG L Y, JIN Q, ZHAO K X, et al. 3D hierarchical Cu@Ag nanostructure as a current collector for dendrite-free lithium metal anode[J]. Dalton Transactions, 2022, 51(43): 16565-16573.
|
36 |
江伟伟, 李俊杰, 叶承舟, 等. 轻质三维多孔泡沫铝用作高性能锂金属负极骨架[J]. 无机化学学报, 2023, 39(2): 291-299.
|
|
JIANG W W, LI J J, YE C Z, et al. Lightweight three-dimensional porous aluminumfoamusedas high performance lithium metal cathode skeleton[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(2): 291-299.
|
37 |
WANG J, LIU H W, WU H C, et al. Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes[J]. Carbon, 2021, 177: 181-188.
|