储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3108-3119.doi: 10.19799/j.cnki.2095-4239.2023.0364
赵浩东(), 张甫仁(), 杜柏林, 李雪, 黄郅凯, 孙世政
收稿日期:
2023-05-29
修回日期:
2023-07-11
出版日期:
2023-10-05
发布日期:
2023-10-09
通讯作者:
张甫仁
E-mail:z15730267714@163.com;zfr@cqjtu.edu.cn
作者简介:
赵浩东(1997—),男,硕士研究生,研究方向为电池热管理,E-mail:z15730267714@163.com;
基金资助:
Haodong ZHAO(), Furen ZHANG(), Bolin DU, Xue LI, Zhikai HUANG, Shizheng SUN
Received:
2023-05-29
Revised:
2023-07-11
Online:
2023-10-05
Published:
2023-10-09
Contact:
Furen ZHANG
E-mail:z15730267714@163.com;zfr@cqjtu.edu.cn
摘要:
为了增强液冷板的散热性能,通过在液冷通道内添加翅片形成局部扰流是一种主要方法,但是该方法会导致压降增大。基于此,本文设计了一种通道内增设隔板并带有导流孔,同时对通道墙翅片化的新型液冷板结构。在以降低压降和平均温度为目标的情况下,首先通过单因素法分析和讨论了导流孔和导流翅片个数的影响,得出当导流孔和导流翅片的个数分别为4和11时,液冷板的综合散热性能最佳。为了进一步优化液冷板的散热性能,采用多目标优化方法对不同导流孔之间的距离(
中图分类号:
赵浩东, 张甫仁, 杜柏林, 李雪, 黄郅凯, 孙世政. 增设导流孔及翅片化通道墙强化液冷板散热性能的新策略[J]. 储能科学与技术, 2023, 12(10): 3108-3119.
Haodong ZHAO, Furen ZHANG, Bolin DU, Xue LI, Zhikai HUANG, Shizheng SUN. Strengthening the heat dissipation performance of liquid cooling plate by adding a diversion hole and a finned channel wall[J]. Energy Storage Science and Technology, 2023, 12(10): 3108-3119.
表5
样本点与其对应的响应值"
序号 | ||||||
---|---|---|---|---|---|---|
1 | 11.630 | 25.780 | 3.660 | 19.930 | 37.466 | 10.171 |
2 | 7.470 | 18.510 | 4.340 | 0.830 | 38.789 | 8.226 |
3 | 34.880 | 13.220 | 0.680 | 4.150 | 36.798 | 10.390 |
4 | 2.490 | 19.830 | 2.710 | 39.030 | 36.871 | 11.794 |
5 | 46.510 | 22.470 | 6.510 | 19.100 | 36.783 | 13.624 |
6 | 32.390 | 10.580 | 8.000 | 11.630 | 36.686 | 10.437 |
7 | 44.020 | 12.560 | 1.490 | 44.020 | 37.074 | 14.642 |
8 | 19.100 | 14.540 | 4.470 | 34.880 | 36.698 | 11.554 |
9 | 26.580 | 25.120 | 2.980 | 1.660 | 37.501 | 9.985 |
10 | 31.560 | 26.440 | 3.800 | 41.530 | 36.592 | 14.954 |
11 | 21.590 | 1.980 | 0.270 | 17.440 | 36.687 | 9.976 |
12 | 43.190 | 9.250 | 0.410 | 24.080 | 36.709 | 12.225 |
13 | 33.220 | 27.760 | 4.070 | 20.760 | 37.027 | 12.578 |
14 | 39.030 | 35.030 | 6.370 | 36.540 | 36.533 | 16.634 |
15 | 14.120 | 33.710 | 5.420 | 4.980 | 38.701 | 9.628 |
16 | 0.000 | 15.200 | 5.830 | 18.270 | 37.533 | 9.383 |
17 | 42.360 | 29.750 | 1.080 | 46.510 | 36.650 | 17.421 |
18 | 45.680 | 17.850 | 3.390 | 9.970 | 36.740 | 12.510 |
19 | 8.310 | 11.240 | 0.140 | 30.730 | 36.684 | 10.479 |
20 | 37.370 | 0.660 | 2.850 | 13.290 | 36.692 | 10.657 |
21 | 22.420 | 38.340 | 2.310 | 14.120 | 37.826 | 11.792 |
22 | 34.050 | 24.460 | 6.240 | 2.490 | 37.295 | 10.986 |
23 | 23.250 | 17.190 | 1.220 | 42.360 | 36.735 | 13.043 |
24 | 35.710 | 8.590 | 4.610 | 49.000 | 37.144 | 13.978 |
25 | 9.970 | 3.310 | 2.440 | 43.190 | 36.753 | 11.284 |
26 | 18.270 | 27.100 | 0.000 | 9.140 | 37.564 | 9.877 |
27 | 0.830 | 36.360 | 3.530 | 33.220 | 37.576 | 12.312 |
28 | 12.460 | 28.420 | 4.880 | 48.170 | 36.784 | 14.291 |
29 | 16.610 | 34.370 | 7.860 | 39.860 | 36.849 | 14.196 |
30 | 24.080 | 13.880 | 5.020 | 14.950 | 36.733 | 10.193 |
31 | 47.340 | 4.630 | 6.100 | 16.610 | 36.722 | 12.018 |
32 | 39.860 | 11.900 | 3.930 | 29.070 | 36.761 | 12.450 |
33 | 1.660 | 5.290 | 5.560 | 37.370 | 36.841 | 10.565 |
34 | 41.530 | 39.000 | 3.120 | 32.390 | 36.624 | 16.909 |
35 | 40.690 | 30.410 | 0.950 | 10.800 | 37.103 | 12.971 |
36 | 4.980 | 31.730 | 6.640 | 23.250 | 37.763 | 10.752 |
37 | 5.810 | 29.080 | 0.540 | 25.750 | 37.473 | 10.790 |
38 | 4.150 | 15.860 | 1.360 | 12.460 | 37.761 | 8.992 |
39 | 28.240 | 31.070 | 0.810 | 29.900 | 36.829 | 13.591 |
40 | 20.760 | 37.680 | 4.750 | 31.560 | 36.940 | 14.037 |
41 | 19.930 | 5.950 | 7.050 | 45.680 | 36.763 | 12.314 |
42 | 3.320 | 32.390 | 2.170 | 5.810 | 39.479 | 8.895 |
43 | 30.730 | 37.020 | 6.780 | 15.780 | 37.426 | 12.935 |
44 | 44.850 | 35.690 | 4.200 | 6.640 | 37.546 | 13.779 |
45 | 15.780 | 7.930 | 7.730 | 24.920 | 36.638 | 10.225 |
46 | 14.950 | 33.050 | 1.630 | 44.850 | 36.908 | 14.270 |
47 | 17.440 | 6.610 | 2.580 | 3.320 | 37.388 | 8.735 |
48 | 38.200 | 9.920 | 7.460 | 34.050 | 36.890 | 12.456 |
49 | 9.140 | 3.970 | 3.250 | 22.420 | 36.844 | 9.655 |
50 | 13.290 | 20.490 | 7.590 | 8.310 | 37.682 | 9.234 |
51 | 27.410 | 0.000 | 5.290 | 27.410 | 36.637 | 10.983 |
52 | 10.800 | 2.640 | 5.970 | 7.470 | 37.650 | 8.534 |
表8
25组实验数据及仿真结果"
实验序号 | 实验因素 | 实验结果 | |||||
---|---|---|---|---|---|---|---|
W/mm | |||||||
1 | 0 | 70 | 70 | 70 | 70 | 36.534 | 11.230 |
2 | 0 | 80 | 80 | 80 | 80 | 36.540 | 10.622 |
3 | 0 | 90 | 90 | 90 | 90 | 36.595 | 10.498 |
4 | 0 | 100 | 100 | 100 | 100 | 36.605 | 10.569 |
5 | 0 | 110 | 110 | 110 | 110 | 36.595 | 11.151 |
6 | 2 | 70 | 80 | 90 | 100 | 36.344 | 9.476 |
7 | 2 | 80 | 90 | 100 | 110 | 36.341 | 9.705 |
8 | 2 | 90 | 100 | 110 | 70 | 36.335 | 9.536 |
9 | 2 | 100 | 110 | 70 | 80 | 36.363 | 9.687 |
10 | 2 | 110 | 70 | 80 | 90 | 36.326 | 9.999 |
11 | 4 | 70 | 90 | 110 | 80 | 36.331 | 8.441 |
12 | 4 | 80 | 100 | 70 | 90 | 36.351 | 8.572 |
13 | 4 | 90 | 110 | 80 | 100 | 36.366 | 8.569 |
14 | 4 | 100 | 70 | 90 | 110 | 36.336 | 9.101 |
15 | 4 | 110 | 80 | 100 | 70 | 36.319 | 8.625 |
16 | 6 | 70 | 100 | 80 | 110 | 36.386 | 8.304 |
17 | 6 | 80 | 110 | 90 | 70 | 36.374 | 7.705 |
18 | 6 | 90 | 70 | 100 | 80 | 36.359 | 7.837 |
19 | 6 | 100 | 80 | 110 | 90 | 36.360 | 7.842 |
20 | 6 | 110 | 90 | 70 | 100 | 36.389 | 8.101 |
21 | 8 | 70 | 110 | 100 | 90 | 36.440 | 7.273 |
22 | 8 | 80 | 70 | 110 | 100 | 36.435 | 7.373 |
23 | 8 | 90 | 80 | 70 | 110 | 36.430 | 7.646 |
24 | 8 | 100 | 90 | 80 | 70 | 36.428 | 7.248 |
25 | 8 | 110 | 100 | 90 | 80 | 36.439 | 7.215 |
1 | HUANG M H, HUANG Y, CAO J J, et al. Study on mitigation of automobile exhaust pollution in an urban street canyon: Emission reduction and air cleaning street lamps[J]. Building and Environment, 2021, 193: 107651. |
2 | LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. |
3 | MOUNCE R, NELSON J D. On the potential for one-way electric vehicle car-sharing in future mobility systems[J]. Transportation Research Part A: Policy and Practice, 2019, 120: 17-30. |
4 | TETE P R, GUPTA M M, JOSHI S S. Developments in battery thermal management systems for electric vehicles: A technical review[J]. Journal of Energy Storage, 2021, 35: 102255. |
5 | AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering, 2018, 137: 792-807. |
6 | DENG Y W, FENG C L, JIAQIANG E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
7 | BAMDEZH M A, MOLAEIMANESH G R, ZANGANEH S. Role of foam anisotropy used in the phase-change composite material for the hybrid thermal management system of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101778. |
8 | LIAO G L, JIANG K, ZHANG F, et al. Thermal performance of battery thermal management system coupled with phase change material and thermoelectric elements[J]. Journal of Energy Storage, 2021, 43: 103217. |
9 | LI Y, GUO H, QI F, et al. Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles[J]. Applied Thermal Engineering, 2021, 185: 116382. |
10 | SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. |
11 | ZHAO R C, WEN D Y, LAI Z D, et al. Performance analysis and optimization of a novel cooling plate with non-uniform pin-fins for lithium battery thermal management[J]. Applied Thermal Engineering, 2021, 194: 117022. |
12 | HUANG Y Q, MEI P, LU Y J, et al. A novel approach for lithium-ion battery thermal management with streamline shape mini channel cooling plates[J]. Applied Thermal Engineering, 2019, 157: 113623. |
13 | DENG Y W, FENG C L, JIAQIANG E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
14 | XIE L, HUANG Y X, LAI H X. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module[J]. Applied Thermal Engineering, 2020, 178: 115599. |
15 | JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23): 10359-10368. |
16 | HOSSEINIRAD E, KHOSHVAGHT-ALIABADI M. Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121259. |
17 | LAW M, LEE P S. Comparative study of temperature and pressure instabilities during flow boiling in straight- and 10° oblique-finned microchannels[J]. Energy Procedia, 2015, 75: 3105-3112. |
18 | LAW M, KANARGI O B, LEE P S. Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 100: 646-660. |
19 | ALI A M, ANGELINO M, RONA A. Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins[J]. Applied Thermal Engineering, 2021, 198: 117458. |
20 | YAN Y F, YAN H Y, YIN S Y, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation[J]. International Journal of Heat and Mass Transfer, 2019, 129: 468-479. |
21 | SHI G L. Research on 3D temperature field in biological tissue based on adaptive simulated annealing algorithm[J]. Journal of Mechanical Engineering, 2016, 52(6): 166. |
22 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120307. |
[1] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[2] | 刘宇龄, 孟锦豪, 彭乔, 刘天琪, 王扬, 蔡永翔. 基于NSGA-II遗传算法的锂电池均衡指标优化[J]. 储能科学与技术, 2023, 12(6): 1946-1956. |
[3] | 沈雪晴, 陈威. 内嵌树形翅片相变层电池热管理性能[J]. 储能科学与技术, 2023, 12(2): 459-467. |
[4] | 段双明, 董鹏来. 基于差分电压平台的锂电池自适应充电策略[J]. 储能科学与技术, 2023, 12(10): 3170-3180. |
[5] | 毛前军, 朱元媛. 新型分叉翅片强化管壳式储能罐储热性能[J]. 储能科学与技术, 2023, 12(1): 69-78. |
[6] | 韩帅, 孙乐平, 卢健斌, 郭小璇. 含电动汽车的气电互联虚拟电厂区间多目标优化调度策略[J]. 储能科学与技术, 2022, 11(5): 1428-1436. |
[7] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[8] | 徐晓斌, 徐业飞, 张恒运, 朱顺良, 王海峰. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562. |
[9] | 刘立君, 宁雅倩, 李晓庆, 刘晓燕. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, 11(11): 3681-3687. |
[10] | 赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547. |
[11] | 吴炜, 李守成, 谢纬安. 翅片参数与PCM材料对散热器传热影响实验研究[J]. 储能科学与技术, 2021, 10(6): 2303-2311. |
[12] | 李伟, 左志涛, 侯虎灿, 梁奇, 林志华, 陈海生. 基于遗传算法的离心压缩机蜗壳参数化及多目标优化[J]. 储能科学与技术, 2021, 10(3): 1071-1079. |
[13] | 王君雷, 徐祥贵, 孙通, 姚华, 宋民航, 王燕, 黄云. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522. |
[14] | 侯磊, 王子驰, 李营超, 王赛豪, 张亚杰, 张禹森. 压缩空气储能系统分析及多目标优化[J]. 储能科学与技术, 2021, 10(1): 379-384. |
[15] | 解坤, 姜成龙, 吴亮璇, 常宏, 樊彬, 陈立铎, 温浩然. 基于退役电池梯次利用的源-储容量优化配置[J]. 储能科学与技术, 2020, 9(S1): 23-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||