1 |
李栖楠. 油、气、氢、电综合能源站成本模型研究[J]. 石油石化绿色低碳, 2021, 6(6): 10-16.
|
|
LI Q N. Research on cost model of oil, natural gas, hydrogen and charging integrated energy station[J]. Green Petroleum & Petrochemicals, 2021, 6(6): 10-16.
|
2 |
吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术, 2019, 8(3): 495-499.
|
|
WU J Y, HUANG Z, GUO P Y. Research progress on fire protection technology of LFP lithium-ion battery used in energy storage power station[J]. Energy Storage Science and Technology, 2019, 8(3): 495-499.
|
3 |
张永丰, 黄昊. LFP锂电池热失控特性及其爆炸危险性分析[C]//2017中国消防协会科学技术年会论文集. 南宁, 2017: 127-129.
|
4 |
蔡晶菁. 锂离子电池储能电站火灾防控技术研究综述[J]. 消防科学与技术, 2022, 41(4): 472-477.
|
|
CAI J J. Review on the fire prevention and control technology for lithium-ion battery energy storage power station[J]. Fire Science and Technology, 2022, 41(4): 472-477.
|
5 |
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186.
|
6 |
ZHAO J C, LU S, FU Y Y, et al. Experimental study on thermal runaway behaviors of 18650 li-ion battery under enclosed and ventilated conditions[J]. Fire Safety Journal, 2021, 125: 103417.
|
7 |
SOMANDEPALLI V, MARR K, HORN Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1): 98-104.
|
8 |
郭超超, 张青松. 锂离子电池热解气体爆炸极限测定及其危险性分析[J]. 中国安全生产科学技术, 2016, 12(9): 46-49.
|
|
GUO C C, ZHANG Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. Journal of Safety Science and Technology, 2016, 12(9): 46-49.
|
9 |
JIN Y, ZHAO Z X, MIAO S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: 102987.
|
10 |
尹康涌, 陶风波, 梁伟, 等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术, 2022, 11(8): 2488-2496.
|
|
YIN K Y, TAO F B, LIANG W, et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496.
|
11 |
DADASHZADEH M, KHAN F, HAWBOLDT K, et al. An integrated approach for fire and explosion consequence modelling[J]. Fire Safety Journal, 2013, 61: 324-337.
|
12 |
LIU R, DENG H B, MOU C L, et al. FLACS-based simulation of combustible gases leaked from the pressure device for the optimizing of gas detectors' setup[J]. Safety, 2022, 8(3): 53.
|
13 |
罗振敏, 张群, 王华, 等. 基于FLACS的受限空间瓦斯爆炸数值模拟[J]. 煤炭学报, 2013, 38(8): 1381-1387.
|
|
LUO Z M, ZHANG Q, WANG H, et al. Numerical simulation of gas explosion in confined space with FLACS[J]. Journal of China Coal Society, 2013, 38(8): 1381-1387.
|
14 |
Gexcon AS. FLACS v21.1 User's Manual[R/OL].2021[2023-07-01]. http://license.gexcon.com/FLACS-manual-external/html/gettingstarted.html
|
15 |
马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600.
|
|
MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600.
|
16 |
张青松, 赵洋, 刘添添. 荷电状态和电池排列对锂离子电池热失控传播的影响[J]. 储能科学与技术, 2022, 11(8): 2519-2525.
|
|
ZHANG Q S, ZHAO Y, LIU T T. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525.
|
17 |
SKJOLD T, HISKEN H, BERNARD L, et al. Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for inhomogeneous mixtures in 20-foot ISO containers[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 220-236.
|
18 |
万朝梅. 石化工程建筑物抗爆设计方案分析与选择[J]. 炼油技术与工程, 2016, 46(12): 50-54.
|
|
WAN Z M. Analysis of anti-explosion design of buildings for petrochemical industry[J]. Petroleum Refinery Engineering, 2016, 46(12): 50-54.
|