1 |
刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522.
|
|
LIU Z Y, ZHANG Q P, DONG C, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522.
|
2 |
刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369.
|
|
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369.
|
3 |
马汀山, 王妍, 吕凯, 等. "双碳"目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148.
|
|
MA T S, WANG Y, LYU K, et al. Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the "dual-carbon" goal[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148.
|
4 |
张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578.
|
|
ZHANG X R, XU Y J, YANG L J, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578.
|
5 |
GEYER M, GIULIANO S. Conversion of existing coal plants into thermal storage plants[M]//Encyclopedia of Energy Storage. Amsterdam: Elsevier, 2022: 122-132.
|
6 |
BAUER D. Carnot-Batteries[C]//10th German-Japanese Environment and Energy Dialogue Forum, 2019.
|
7 |
DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756.
|
8 |
MCTIGUE J D P. 'Carnot Batteries' for Electricity Storage[R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2019.
|
9 |
圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657.
|
|
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657.
|
10 |
BLANQUICETH J, CARDEMIL J M, HENRÍQUEZ M, et al. Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2023, 175: 113134.
|
11 |
ZAMENGO M, YOSHIDA K, MORIKAWA J. Numerical evaluation of a Carnot battery system comprising a chemical heat storage/pump and a Brayton cycle[J]. Journal of Energy Storage, 2021, 41: 102955.
|
12 |
YONG Q Q, TIAN Y P, QIAN X, et al. Retrofitting coal-fired power plants for grid energy storage by coupling with thermal energy storage[J]. Applied Thermal Engineering, 2022, 215: 119048.
|
13 |
LIU X, JIN K L, XUE X, et al. Performance and economic analysis of steam extraction for energy storage to molten salt with coupled ejector and thermal power units[J]. Journal of Energy Storage, 2023, 72: 108488.
|
14 |
VINNEMEIER P, WIRSUM M, MALPIECE D, et al. Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities[J]. Applied Energy, 2016, 184: 506-522.
|
15 |
MAHDI Z, DERSCH J, SCHMITZ P, et al. Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants[C]//AIP Conference Proceedings", "SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems. Freiburg, Germany. AIP Publishing, 2022: 2445.
|
16 |
WANG B G, MA H, REN S J, et al. Effects of integration mode of the molten salt heat storage system and its hot storage temperature on the flexibility of a subcritical coal-fired power plant[J]. Journal of Energy Storage, 2023, 58: 106410.
|
17 |
赫广迅, 宋业琛. 基于火电站转型储能电站的超高温热泵及熔盐储换热系统工程应用设计[J]. 汽轮机技术, 2023, 65(2): 93-96, 146.
|
|
HE G X, SONG Y C. Engineering application design of ultra-high temperature heat pump and molten salt heat storage and exchange system based on the rmal power station transformation to energy storage power station[J]. Turbine Technology, 2023, 65(2): 93-96, 146.
|
18 |
王辉, 李峻, 祝培旺, 等. 应用于火电机组深度调峰的百兆瓦级熔盐储能技术[J]. 储能科学与技术, 2021, 10(5): 1760-1767.
|
|
WANG H, LI J, ZHU P W, et al. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant[J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767.
|
19 |
古雯雯. 基于Aspen Plus的太阳能与火电机组集成与性能分析[D]. 北京: 华北电力大学, 2009.
|
|
GU W W. Integration and performance analysis of solar energy and thermal power units based on aspen plus[D].Beijing: North China Electric Power University, 2009.
|
20 |
蔡小刚. 100 MW熔融盐塔式太阳能光热电站设计优化研究[D]. 北京: 华北电力大学, 2019.
|
|
CAI X G. Study on design optimization of 100 MW molten salt tower solar photothermal power station[D].Beijing: North China Electric Power University, 2019.
|
21 |
GEYERR M, TRIEB F, GIULIANO S. Repurposing of existing coal-fired power plants into Thermal Storage Plants for renewable power in Chile[J]. Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ): Bonn, Germany, 2020.
|
22 |
SALOMONE-GONZÁLEZ D, GONZÁLEZ-AYALA J, MEDINA A, et al. Pumped heat energy storage with liquid media: Thermodynamic assessment by a Brayton-like model[J]. Energy Conversion and Management, 2020, 226: 113540.
|
23 |
杨鹤, 杜小泽. 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42(1): 196-211.
|
|
YANG H, DU X Z. Performance analysis and multi-objective optimization of brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42(1): 196-211.
|