储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3616-3626.doi: 10.19799/j.cnki.2095-4239.2023.0684
袁子鸥1(), 王峰1,2(), 祁星朝1, 张琦1, 马瑞1
收稿日期:
2023-09-30
修回日期:
2023-10-22
出版日期:
2023-12-05
发布日期:
2023-12-09
通讯作者:
王峰
E-mail:yuan980317@163.com;wangfeng@imut.edu.cn
作者简介:
袁子鸥(1998—),女,硕士研究生,主要研究方向为储热材料和储热技术等,E-mail:yuan980317@163.com;
基金资助:
Ziou YUAN1(), Feng WANG1,2(), Xingzhao QI1, Qi ZHANG1, Rui MA1
Received:
2023-09-30
Revised:
2023-10-22
Online:
2023-12-05
Published:
2023-12-09
Contact:
Feng WANG
E-mail:yuan980317@163.com;wangfeng@imut.edu.cn
摘要:
近年来工业废盐的堆积量剧增引发一系列环境问题。废盐的处置方法已成为制约废盐资源化利用的瓶颈。针对以NaCl和Na2SO4为主要成分的工业废盐(杂质离子包含钙、镁、钾等金属离子),本工作提出利用钠基废盐作为储热材料的处置思路并对其热性能进行分析。采用分子动力学方法,分析废盐中主要杂质对钠基盐体系热物性影响。进一步通过高温熔融法制备二元钠基共晶盐NaCl-Na2SO4,分别添加质量分数为1%和5%的KCl模拟含有微量K+废盐,研究其对混合盐热物性影响。结果表明K+对钠基盐的热物性有显著提升,含有1%和5% KCl的混合钠基盐相比二元钠基共晶盐的相变潜热分别提高了64%和60%,导热系数提高了2~3倍。K+的存在有利于废盐热物性改善,为该类固废资源化利用提供了途径。
中图分类号:
袁子鸥, 王峰, 祁星朝, 张琦, 马瑞. 应用于储热领域的混合钠基废盐热物性分析[J]. 储能科学与技术, 2023, 12(12): 3616-3626.
Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field[J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626.
1 | 吴骞, 袁文蛟, 王洁, 等. 工业废盐热处理技术研究进展[J]. 环境工程技术学报, 2022, 12(5): 1668-1680. |
WU Q, YUAN W J, WANG J, et al. Research progress of industrial waste salt thermal treatment technologies[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1668-1680. | |
2 | ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169: 108924. |
3 | GUO L L, LIU Q, YIN H Q, et al. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature[J]. Corrosion Science, 2020, 166: 108473. |
4 | LI X J, XU T R, LIU M M, et al. Thermodynamic and kinetic corrosion behavior of alloys in molten MgCl2-NaCl eutectic: FPMD simulations and electrochemical technologies[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111624. |
5 | LAI X, YIN H Q, LI P, et al. Design optimization and thermal storage characteristics of NaNO3-NaCl-NaF molten salts with high latent heat and low cost for the thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104805. |
6 | DING W J, BONK A, BAUER T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 564-576. |
7 | WANG X X, DEL RINCON J, LI P W, et al. Thermophysical properties experimentally tested for NaCl-KCl-MgCl2 eutectic molten salt as a next-generation high-temperature heat transfer fluids in concentrated solar power systems[J]. Journal of Solar Energy Engineering, 2021, 143(4): 041005. |
8 | YIN H Q, WANG Z R, LAI X, et al. Optimum design and key thermal property of NaCl-KCl-CaCl2 eutectic salt for ultra-high-temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111541. |
9 | 魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431. |
WEI X L, XIE P, ZHANG X C, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431. | |
10 | 赖敏明, 徐先宝, 李响. 工业废盐的处理及其资源化研究进展[J]. 应用化工, 2023, 52(1): 215-218, 222. |
LAI M M, XU X B, LI X. Research progress on treatment and resource utilization of industrial waste salt[J]. Applied Chemical Industry, 2023, 52(1): 215-218, 222. | |
11 | ZHOU H, ZHOU H, TANG L L, et al. Photoelectrocatalytic treatment and resource utilization of industrial waste salt for chlor-alkali electrolysis[J]. Journal of Applied Electrochemistry, 2023, 53(5): 963-975. |
12 | 周艳丽. 硫酸钠和氯化钠高盐废水分盐工艺研究[J]. 煤炭与化工, 2020, 43(6): 134-136, 140. |
ZHOU Y L. Study on salt separation process of high salt wastewater from sodium sulfate and sodium chloride[J]. Coal and Chemical Industry, 2020, 43(6): 134-136, 140. | |
13 | 丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2): 58-61. |
DING Z G, GUO J B, LU C. Experimental study on harmless disposal of chemical waste salts[J]. Inorganic Chemicals Industry, 2020, 52(2): 58-61. | |
14 | 王炼, 陈利芳, 高静静, 等. 化工行业废盐资源化现状及发展趋势[J]. 科技导报, 2021, 39(17): 9-16. |
WANG L, CHEN L F, GAO J J, et al. Status quo of industrial waste salt resource utilization and its development trend[J]. Science & Technology Review, 2021, 39(17): 9-16. | |
15 | 刘萍. 利用Materials Studio对锆钛酸铅进行结构模拟及性能研究[D]. 西安: 西安科技大学, 2013. |
LIU P. The structural simulation and performance study of lead zirconate titanate were carried out by Materials Studio[D]. Xi'an: Xi'an University of Science and Technology, 2013. | |
16 | 李扬. 相变材料热物性的分子模拟研究[D]. 郑州: 郑州大学, 2018. |
LI Y. Molecular simulation study on thermophysical properties of phase change materials[D]. Zhengzhou: Zhengzhou University, 2018. | |
17 | NI H O, WU J, SUN Z, et al. Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable Energy, 2019, 136: 955-967. |
18 | WANG J, WU J, SUN Z, et al. Molecular dynamics study of the transport properties and local structures of molten binary systems (Li, Na)Cl, (Li, K)Cl and (Na, K)Cl[J]. Journal of Molecular Liquids, 2015, 209: 498-507. |
19 | WU J E, WANG J A, NI H O, et al. Investigation of microscopic structure and ion dynamics in liquid Li(Na, K)EutecticCl systems by molecular dynamics simulation[J]. Applied Sciences, 2018, 8(10): 1874. |
20 | SUN H, ZHANG P, WANG J Q. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science, 2018, 143: 187-199. |
21 | WANG J W, ZHOU H X, ZHANG C Z, et al. Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium[J]. Solar Energy Materials and Solar Cells, 2018, 179: 194-201. |
22 | WU J, NI H O, LIANG W S, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science, 2019, 170: 109051. |
23 | XU T R, LI X J, WANG Y, et al. Development of deep potentials of molten MgCl2-NaCl and MgCl2-KCl salts driven by machine learning[J]. ACS Applied Materials & Interfaces, 2023,15(11): 14184-14195. |
24 | JIANG Y F, SUN Y P, JACOB R D, et al. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I)[J]. Solar Energy Materials and Solar Cells, 2018, 178: 74-83. |
25 | 周妍. 六水氯化镁的新型混合盐配制及其膨胀石墨基复合相变材料研究[D]. 广州: 华南理工大学, 2018. |
ZHOU Y. Preparation of new mixed salts of magnesium chloride hexahydrate and its expanded graphite-based composite phase change materials[D]. Guangzhou: South China University of Technology, 2018. | |
26 | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase changematerial[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. | |
27 | ZHANG T Y, WANG T Y, WANG K C, et al. Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage[J]. Solar Energy, 2021, 227: 468-476. |
28 | 美张卓敏, 程强, 王志超, 等. 微纳尺度传热[M]. 北京: 清华大学出版社, 2016: 395. |
ZHANG Z M, CHENG Q, WANG Z C, et al. Nano/microscale heat transfer[M]. Beijing: Tsinghua University Press, 2016: 395. | |
29 | RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 66: 575-584. |
[1] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[2] | 韩瑞, 廖志荣, 于博旭, 徐超, 巨星. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615. |
[3] | 付殿威, 张灿灿, 娜荷芽, 王国强, 吴玉庭, 鹿院卫. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882. |
[4] | 宋文兵, 鹿院卫, 陈晓彤, 何聪, 樊占胜, 吴玉庭. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728. |
[5] | 何聪, 鹿院卫, 宋文兵, 陈晓彤, 吴玉庭, 樊占胜. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729-1734. |
[6] | 吴玉庭, 明苏布道, 张灿灿, 鹿院卫. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296. |
[7] | 盛鹏, 徐丽, 赵广耀, 韩燕, 吴玉庭. 新型混合硝酸熔盐的制备及热物性研究[J]. 储能科学与技术, 2021, 10(1): 170-176. |
[8] | 罗海华, 沈强, 林俊光, 张艳梅, 徐云柯. 新型低熔点混合熔盐储热材料的开发[J]. 储能科学与技术, 2020, 9(6): 1755-1759. |
[9] | 李国跃, 林曦鹏, 王亮, 王艺斐, 彭珑, 陈海生, 谢宁宁. 储释冷循环对岩石材料性能的影响[J]. 储能科学与技术, 2020, 9(4): 1074-1081. |
[10] | 韩燕, 吴玉庭, 马重芳. 混合硝酸盐热物性对比分析[J]. 储能科学与技术, 2019, 8(6): 1224-1229. |
[11] | 桑丽霞, 许永旺, 李锋, 张雅婷, 马文童, 陈旭, 王浩. 碳酸盐/氧化镁-鳞片石墨定型复合蓄热材料的制备及其导热性能[J]. 储能科学与技术, 2019, 8(5): 886-890. |
[12] | 房满庭, 章学来, 纪珺, 华维三, 刘彪, 王绪哲. 水合盐复合相变材料的研究进展[J]. 储能科学与技术, 2019, 8(4): 709-717. |
[13] | 余嘉鹏, 程晓敏, 李元元, 李蓓, 徐虹. Mg-Cu合金热物性的分子动力学计算[J]. 储能科学与技术, 2019, 8(4): 772-777. |
[14] | 张永乐, 张晓明, 吴玉庭, 鹿院卫, 马重芳. 熔盐电磁感应加热系统的热性能分析[J]. 储能科学与技术, 2019, 8(2): 319-325. |
[15] | 周孙希, 章学来, 刘升. 十四烷-正辛酸有机复合相变材料的制备和性能[J]. 储能科学与技术, 2018, 7(4): 692-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||