1 |
DU K, CALAUTIT J, WANG Z H, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied Energy, 2018, 220: 242-273.
|
2 |
WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786.
|
3 |
ZHANG Z, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148(3): 111263.
|
4 |
LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708.
|
5 |
LI C, LI Q, LU X K, et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage: Ingredients selection, fabrication, microstructural characteristics and development, and applications[J]. Journal of Energy Storage, 2022, 55: 105252.
|
6 |
吴玉庭, 明苏布道, 张灿灿, 等. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296.
|
|
WU Y T, MING S B D, ZHANG C C, et al. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts[J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296.
|
7 |
IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50.
|
8 |
ZHANG H J, ZHANG X G, PAN D A, et al. Preparation and application of high-temperature composite phase change materials[J]. Journal of Energy Storage, 2023, 68: 107669.
|
9 |
LI C, LI Q, LI Y L, et al. Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications[J]. Applied Energy, 2019, 238: 1074-1083.
|
10 |
MEHRALI M, TEN ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: 126624.
|
11 |
KUMAR N, GUPTA S K. Progress and application of phase change material in solar thermal energy: An overview[J]. Materials Today: Proceedings, 2021, 44: 271-281.
|
12 |
YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377.
|
13 |
SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7.
|
14 |
JIANG Z, JIANG F, LI C, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): 814.
|
15 |
GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81.
|
16 |
YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60.
|
17 |
WANG H R, RAN X F, ZHONG Y J, et al. Ternary chloride salt-porous ceramic composite as a high-temperature phase change material[J]. Energy, 2022, 238: 121838.
|
18 |
TAO Y B, LIN C H, HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97: 103-110.
|
19 |
WANG T Y, WANG K C, YE F, et al. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102123.
|
20 |
REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163(1): 50-58.
|
21 |
JIANG Z, LENG G H, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172.
|
22 |
LI Q, WEI W Z, LI Y Y, et al. Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage[J]. Energy Reports, 2022, 8: 1528-1537.
|
23 |
DENG Y, LI J H, NIAN H E. Expanded vermiculite: A promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): 1800135.
|
24 |
李钰颖, 魏雯珍, 李琦, 等. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051.
|
|
LI Y Y, WEI W Z, LI Q, et al. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage[J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051.
|
25 |
YANG C, NAVARRO M E, ZHAO B, et al. Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 152: 103-110.
|