1 |
梁银林, 刘庆, 钱勇, 等. 压缩空气储能系统研究概述[J]. 东方电气评论, 2020, 34(3): 82-88.
|
|
LIANG Y L, LIU Q, QIAN Y, et al. Overview of the research on compressed air energy storage system[J]. Dongfang Electric Review, 2020, 34(3): 82-88.
|
2 |
张建军, 周盛妮, 李帅旗, 等. 压缩空气储能技术现状与发展趋势[J]. 新能源进展, 2018, 6(2): 140-150.
|
|
ZHANG J J, ZHOU S N, LI S Q, et al. Overview and development tendency of compressed air energy storage[J]. Advances in New and Renewable Energy, 2018, 6(2): 140-150.
|
3 |
陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501.
|
|
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501.
|
4 |
刘士名. 先进绝热压缩空气储能系统热力性能与经济性分析[D]. 北京: 华北电力大学, 2016.
|
|
LIU S M. Analysis of thermal performance and economy for advanced adiabatic compressed air energy storage (AA-CAES) systems[D]. Beijing: North China Electric Power University, 2016.
|
5 |
中盐集团办公室. 世界首座非补燃压缩空气储能电站在江苏常州投产[J]. 中国盐业, 2022(11): 11-12.
|
6 |
薛小代, 陈晓弢, 梅生伟, 等. 采用熔融盐蓄热的非补燃压缩空气储能发电系统性能[J]. 电工技术学报, 2016, 31(14): 11-20.
|
|
XUE X D, CHEN X T, MEI S W, et al. Performance of non-supplementary fired compressed air energy storage with molten salt heat storage[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 11-20.
|
7 |
薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 164-171.
|
|
XUE X D, MEI S W, LIN Q Y, et al. Energy Internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171.
|
8 |
王鹏. 太阳能光热发电熔盐储罐设计技术研究[J]. 青海电力, 2018, 37(3): 37-40.
|
|
WANG P. Study on design technology of molten salt storage tank for solar thermal power generation[J]. Qinghai Electric Power, 2018, 37(3): 37-40.
|
9 |
熊新强, 杜明俊, 张志贵, 等. 太阳能光热发电熔盐储罐选材、防腐与绝热技术研究[J]. 石油化工高等学校学报, 2017, 30(6): 59-63.
|
|
XIONG X Q, DU M J, ZHANG Z G, et al. Research on material selection, anticorrosion and thermal insulation technology of solar thermal power generation molten salt storage tank[J]. Journal of Petrochemical Universities, 2017, 30(6): 59-63.
|
10 |
郭静, 赵博, 于宇新, 等. 高温熔融盐压力容器用Q345R材料的腐蚀性能研究[J]. 中国特种设备安全, 2019, 35(2): 15-20, 24.
|
|
GUO J, ZHAO B, YU Y X, et al. Study on corrosion properties of Q345R for pressure vessels under the condition of high temperature molten salt[J]. China Special Equipment Safety, 2019, 35(2): 15-20, 24.
|
11 |
FERNÁNDEZ A G, LASANTA M I, PÉREZ F J. Molten salt corrosion of stainless steels and low-Cr steel in CSP plants[J]. Oxidation of Metals, 2012, 78(5): 329-348.
|
12 |
张学文, 李洪川, 李生云, 等. 304、316不锈钢和Inconel 617镍基合金在硝酸熔盐中的腐蚀行为[J]. 机械工程材料, 2019, 43(5): 24-29.
|
|
ZHANG X W, LI H C, LI S Y, et al. Corrosion behavior of 304, 316 stainless steels and inconel 617 Ni-based alloy in molten nitrate salt[J]. Materials for Mechanical Engineering, 2019, 43(5): 24-29.
|
13 |
李久青, 杜翠薇. 腐蚀试验方法及监测技术[M]. 北京: 中国石化出版社, 2007.
|
|
LI J Q, DU C W. Corrosion test method and monitoring technology[M]. Beijing: China Petrochemical Press, 2007.
|
14 |
GOODS S H, BRADSHAW R W. Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts[J]. Journal of Materials Engineering and Performance, 2004, 13(1): 78-87.
|
15 |
赵庆贺, 刘俊友, 刘杰. Cr13Si5铁素体耐热钢1100 ℃下高温抗氧化性能研究[J]. 铸造技术, 2011, 32(2): 179-183.
|
|
ZHAO Q H, LIU J Y, LIU J. Research on anti-oxidation properties of Cr13Si5 ferritic heat resistant steel under 1100 ℃[J]. Foundry Technology, 2011, 32(2): 179-183.
|
16 |
GROSU Y, ANAGNOSTOPOULOS A, BALAKIN B, et al. Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibility and life cycle analysis[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110838.
|
17 |
NITHIYANANTHAM U, GROSU Y, ANAGNOSTOPOULOS A, et al. Nanoparticles as a high-temperature anticorrosion additive to molten nitrate salts for concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110171.
|
18 |
BARAKA A, ABDEL-ROHMAN A I, EL HOSARY A A. Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic[J]. British Corrosion Journal, 1976, 11(1): 44-46.
|
19 |
FERNÁNDEZ A G, PÉREZ F J. Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants[J]. Solar Energy, 2016, 134: 468-478.
|
20 |
SOLEIMANI DORCHEH A, GALETZ M C. Slurry aluminizing: A solution for molten nitrate salt corrosion in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2016, 146: 8-15.
|
21 |
WANG W L, GUAN B, LI X L, et al. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 194: 36-46.
|
22 |
FERNÁNDEZ A G, GALLEGUILLOS H, PÉREZ F J. Thermal influence in corrosion properties of Chilean solar nitrates[J]. Solar Energy, 2014, 109: 125-134.
|
23 |
RUIZ-CABAÑAS F J, PRIETO C, OSUNA R, et al. Corrosion testing device for in situ corrosion characterization in operational molten salts storage tanks: A516 Gr70 carbon steel performance under molten salts exposure[J]. Solar Energy Materials and Solar Cells, 2016, 157: 383-392.
|
24 |
孙华, 苏兴治, 张鹏, 等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望[J]. 腐蚀科学与防护技术, 2017, 29(3): 282-290.
|
|
SUN H, SU X Z, ZHANG P, et al. Research status and progress of molten salts corrosion for concentrated solar thermal power[J]. Corrosion Science and Protection Technology, 2017, 29(3): 282-290.
|
25 |
DORCHEH A S, DURHAM R N, GALETZ M C. High temperature corrosion in molten solar salt: The role of chloride impurities[J]. Materials and Corrosion, 2017, 68(9): 943-951.
|
26 |
ZHANG X M, ZHANG C C, WU Y T, et al. Experimental research of high temperature dynamic corrosion characteristic of stainless steels in nitrate eutectic molten salt[J]. Solar Energy, 2020, 209: 618-627.
|
27 |
FERNÁNDEZ Á G, CABEZA L F. Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review[J]. Solar Energy Materials and Solar Cells, 2019, 194: 160-165.
|
28 |
GRABKE H J, REESE E, SPIEGEL M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043.
|
29 |
ALSHAHRI A H, FORTUNATO L, GHAFFOUR N, et al. Controlling harmful algal blooms (HABs) by coagulation-flocculation-sedimentation using liquid ferrate and clay[J]. Chemosphere, 2021, 274: 129676.
|
30 |
GAO Q, LU Y W, YANG Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel?[J]. Journal of Energy Storage, 2022, 54: 105317.
|