[1] Wu Yuping(吴宇平),Zhang Hanping(张汉平),Wu Feng(吴锋),Li Zhaohui(李朝晖). Polymer Lithium Ion Batteries[M]. Beijing:Chemical Industry Press(化学工业出版社),2007. [2] Huang Haijiang(黄海江). Lithium ion battery safety studies and influence factors analysis[D].Shanghai:Shanghai Institute of Microsystem and Information Technology,2005. [3] Xiang H F,Wang H,Chen C H. Thermal stability of LiPF 6 -based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries[J]. Journal of Power Sources ,2009,191(2):575-581. [4] Jung Y S,Cavanagh A S,Riley L A. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries[J]. Advanced Materials ,2010,22(19):2172-2176. [5] Ellis B L,Lee K T,Nazar L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chem. Mater. ,2010,22 (3):691-714. [6] Sun Y K,Myung S T,Park B C. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials ,2009(8):320-324. [7] Chen G Y,Richardson T J. Thermal instability of Olivine-type LiMnPO 4 cathodes[J]. Journal of Power Sources ,2010,195(4):1221-1224. [8] Wang Q S,Ping P,Zhao X J. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources , 2012,208:210-224. [9] Fang W F,Kwon O J,Wang C Y. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research ,2010,34(2):107-115. [10] Guo G F,Long B,Cheng B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources ,2010,195(8):2393-2398. [11] Nagpure S C,Bhushan B,Babu S,Rizzoni G. Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy[J]. Scripta Materialia ,2009,60(11):933-936. [12] Xiang Hongfa(项宏发),Chen Chunhua(陈春华). Review of safety issues of lithium-ion batteries[J]. Chemical and Physic Power System (化学与物理电源系统),2010(15). [13] Von S U,Nodwell E,Sundher A,Dahn J R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries[J]. Solid State Ionics ,1994,69(3-4):284-290. [14] Huang Qian(黄倩). Thermal effect and safety performance of lithium-ion batteries[D]. Shanghai:Fudan University,2007. [15] Underwriters Laboratories. UL 1642 Standard for Lithium Batteries[S]. US,1995. [16] Underwriters Laboratories. UL 2054 Standard for Lithium Batteries[S]. US,2004. [17] IEC. IEC 62133 Standard for Lithium Batteries[S]. Switzerland,2002. [18] 全国汽车标准化技术委员会. QC/T 743-2006 电动道路车辆用锂离子蓄电池[S]. 北京:中国标准出版社,2006. [19] 全国碱性蓄电池标准化技术委员会. GB.T18287-2013 移动电话用锂离子蓄电池及蓄电池组总规范[S]. 北京:中国标准出版社,2013. [20] Uchida I,Ishikawa H,Mohamedi M. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries[J]. J. Power Sources ,2003(119-121):821-825. [21] Jiang J W,Fortier H,Reimers J N. Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt[J]. J. Electrochem. Soc. ,2004,151(4):609-613. [22] Ishikawa H,Mendoza O,Sone Y. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method[J]. J. Power Sources ,2012,198:236-242. [23] Wang Ning(王宁),Yu Dabo(余大波). 锂电池的爆炸问题[J]. Science and Technology of West China (中国西部科技),2005(17):57-58. |