储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2740-2757.doi: 10.19799/j.cnki.2095-4239.2024.0184
李永奇1(), 杜蕴3, 方振华4, 张松通2, 祝夏雨2, 胡海良1(), 邱景义2, 明海2()
收稿日期:
2024-03-04
修回日期:
2024-05-06
出版日期:
2024-08-28
发布日期:
2024-08-15
通讯作者:
胡海良,明海
E-mail:liyongqi12023@outlook.com;hlhu@gzmu.edu.cn;hai.mingenergy@hotmail.com
作者简介:
李永奇(1999—),男,硕士研究生,主要研究方向为电池试验检测与评估,E-mail:liyongqi12023@outlook.com;
基金资助:
Yongqi LI1(), Yun DU3, Zhenhua FANG4, Songtong ZHANG2, Xiayu ZHU2, Hailiang HU1(), Jingyi QIU2, Hai MING2()
Received:
2024-03-04
Revised:
2024-05-06
Online:
2024-08-28
Published:
2024-08-15
Contact:
Hailiang HU, Hai MING
E-mail:liyongqi12023@outlook.com;hlhu@gzmu.edu.cn;hai.mingenergy@hotmail.com
摘要:
新能源微电网是未来军事设施和基地实现能源自给、独立供电,装备和作战任务实现可持续、不间断供电的有效方式,代表了未来军事能源的发展趋势,通过建立新能源微电网将集中发电模式转向本地灵活可靠的可持续电力或储能形式以此用来缓解战场或属地社会生活、生产用电紧张,提高战场和属地的能源综合利用效率和调度能力,降低后勤补给压力。鉴于该发电方式的时域与空域不受限,其在军事能源领域得到了广泛应用,应用方式也随着经验的积累和技术的迭代在不断创新,对战略决策、作战部署和装备效能的发挥也产生了显著的增益影响。当然,有别于民用新能源微电网的使用环境和工况,军用新能源微电网往往面临极端的环境、复杂的工况和高强度的毁伤冲击等新的挑战,因此其运营与维护方面不仅需要组建专业的力量、建立快速反应、高效处置的运维预案及应对策略,而且在建设过程中也应提高相关组件及附属设施的品质,充分考虑军事新能源微电网可能遭遇的各类特殊情况,包括电网石墨/碳纤维炸弹、爆炸波的冲击毁伤、电磁脉冲干扰、电网病毒、无人机侵扰以及其他人为破坏电网平衡的干预方式,不断提高微电网的战场环境和复杂工况的适应能力,致力于实现战场电能源的安全、高效和可持续保障。基于以上考虑,本文系统综述了太阳能、风能等军用新能源微电网系统的运营、维护及故障处置分析的最新研究成果,并对面向战场的军事新能源微电网的未来发展提出了参考建议。
中图分类号:
李永奇, 杜蕴, 方振华, 张松通, 祝夏雨, 胡海良, 邱景义, 明海. 军用新能源微电网系统的运维及故障处置分析[J]. 储能科学与技术, 2024, 13(8): 2740-2757.
Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications[J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757.
1 | KEISANG K, BADER T, SAMIKANNU R. Review of operation and maintenance methodologies for solar photovoltaic microgrids[J]. Frontiers in Energy Research, 2021, 9: 730230. DOI: 10.3389/fenrg.2021.730230. |
2 | ZHANG J, HUANG W L. A pilot assessment of new energy usage behaviors: The impacts of environmental accident, cognitions, and new energy policies[J]. Frontiers in Environmental Science, 2022, 10: 955999. DOI: 10.3389/fenvs.2022.955999. |
3 | JOUHARA H, MONTORSI L, SAYEGH M A. Advances and applications of renewable energy[J]. Renewable Energy, 2021, 165: 75-76. DOI: 10.1016/j.renene.2020.11.092. |
4 | BOUDET H S. Public perceptions of and responses to new energy technologies[J]. Nature Energy, 2019, 4(6): 446-455. DOI: 10.1038/s41560-019-0399-x |
5 | CHAUHAN A, SAINI R P. A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 99-120. DOI: 10.1016/j.rser.2014.05.079. |
6 | BOURAIMA M B, AYYILDIZ E, BADI I, et al. An integrated intelligent decision support framework for the development of photovoltaic solar power[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107253. DOI:10.1016/j.engappai. 2023. 107253 |
7 | SARITAS O, BURMAOGLU S. Future of sustainable military operations under emerging energy and security considerations[J]. Technological Forecasting and Social Change, 2016, 102: 331-343. DOI: 10.1016/j.techfore.2015.08.010. |
8 | BUNKER K J, COOK M D, WEAVER W W, et al. Multidimensional optimal droop control for DC microgrids in military applications[J]. Applied Sciences, 2018, 8(10): 1966. DOI: 10.3390/app8101966. |
9 | JIANG P, HUANG S J, ZHANG T. Asymmetric information in military microgrid confrontations—Evaluation metric and influence analysis[J]. Energies, 2020, 13(8): 1954. DOI: 10.3390/en13081954. |
10 | ADEFARATI T, BANSAL R C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources[J]. Applied Energy, 2019, 236: 1089-1114. DOI: 10.1016/j.apenergy.2018.12.050. |
11 | ANUAT E, VAN BOSSUYT D L, POLLMAN A. Energy resilience impact of supply chain network disruption to military microgrids[J]. Infrastructures, 2021, 7(1): 4. DOI: 10.3390/infrastructures 7010004. |
12 | KAIN A, VAN BOSSUYT D L, POLLMAN A. Investigation of nanogrids for improved navy installation energy resilience[J]. Applied Sciences, 2021, 11(9): 4298. DOI: 10.3390/app11094298. |
13 | LAI K X, ZHANG L. Sizing and siting of energy storage systems in a military-based vehicle-to-grid microgrid[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 1909-1919. DOI: 10.1109/TIA.2021.3057339. |
14 | PONCE-JARA M A, RUIZ E, GIL R, et al. Smart Grid: Assessment of the past and present in developed and developing countries[J]. Energy Strategy Reviews, 2017, 18: 38-52. DOI: 10.1016/j.esr.2017.09.011. |
15 | WANG R, HSU S C, ZHENG S N, et al. Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy[J]. Applied Energy, 2020, 274: 115287. DOI: 10.1016/j.apenergy.2020.115287. |
16 | ABDELRAZIK M K, ABDELAZIZ S E, HASSAN M F, et al. Climate action: Prospects of solar energy in Africa[J]. Energy Reports, 2022, 8: 11363-11377. DOI: 10.1016/j.egyr.2022.08.252 |
17 | HUSSAIN A, BUI V H, KIM H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied Energy, 2019, 240: 56-72. DOI: 10.1016/j.apenergy.2019.02.055. |
18 | ASLAN M, LSIKL H. Green energy for the battlefield[J]. International Journal of Green Energy, 2017, 14(12): 1020-1026. DOI: 10.1080/15435075.2017.1354299 |
19 | 杨敏, 张正豪, 裴向前, 等. 美国陆军电力与能源战略[J]. 电力与能源, 2015, 36(2): 135-141. |
YANG M, ZHANG Z H, PEI X Q, et al. Power and energy strategy of U. S. Army[J]. Power & Energy, 2015, 36(2): 135-141. | |
20 | 赵一可, 李雷. 美军供电保障发展动态及启示[J]. 中国储运, 2020(12): 177-178. |
ZHAO Y K, LI L. Development trends and enlightenment of US military power supply support[J]. China Storage & Transport, 2020(12): 177-178. | |
21 | 石珊珊. "氢"装上阵 GE HA燃机赋能电力系统新赛道[N]. 机电商报, 2023-03-13(A08). |
SHI S S. "Hydrogen" is put on the GEHA gas turbine powered new power system track [N]. Electromechanical Business Daily, 2023-03-13 (A08). | |
22 | 刘嘉杰. 城镇建筑领域碳达峰碳中和实施路径探索[J]. 住宅与房地产, 2023(20): 19-22. |
LIU J J. Exploration on the implementation path of carbon neutrality in peak carbon dioxide emissions in the field of urban construction[J]. Housing and Real Estate, 2023(20): 19-22. | |
23 | 于海青, 张涛, 明梦君. 关于智慧军事能源的思考[J]. 国防科技, 2019, 40(2): 4-8. DOI: 10.13943/j.issn1671-4547.2019.02.02. |
YU H Q, ZHANG T, MING M J. Thoughts on the smart military energy[J]. National Defense Technology, 2019, 40(2): 4-8. DOI: 10.13943/j.issn1671-4547.2019.02.02. | |
24 | PEINADO GONZALO A, PLIEGO MARUGÁN A, GARCÍA MÁRQUEZ F P. Survey of maintenance management for photovoltaic power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110347. DOI: 10.1016/j.rser.2020. 110347. |
25 | ALAM M K, KHAN F, JOHNSON J, et al. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques[J]. IEEE Journal of Photovoltaics, 2015, 5(3): 982-997. DOI: 10.1109/JPHOTOV.2015.2397599. |
26 | SOOMAR A M, HAKEEM A, MESSAOUDI M, et al. Solar photovoltaic energy optimization and challenges[J]. Frontiers in Energy Research, 2022, 10: 879985. DOI: 10.3389/fenrg. 2022.879985. |
27 | CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3): 710-727. DOI: 10.1039/C6EE03397K. |
28 | NGHITEVELEKWA K, BANSAL R C. A review of generation dispatch with large-scale photovoltaic systems[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 615-624. DOI: 10.1016/j.rser.2017.08.035. |
29 | YU Y, GAO B W, LU C, et al. Photovoltaic power station operation and maintenance data collection and analysis[J]. Journal of Physics: Conference Series, 2022, 2360(1): 012039. DOI: 10.1088/1742-6596/2360/1/012039. |
30 | DHERE N G, SHIRADKAR N S. Fire hazard and other safety concerns of photovoltaic systems[J]. Journal of Photonics for Energy, 2012, 2(1): 022006. DOI: 10.1117/1.jpe.2.022006. |
31 | 熊昌全, 温贤茂, 张宇宁, 等. 光伏组件发电故障诊断方法研究[J]. 科技创新与应用, 2023, 13(9): 77-81, 85. DOI: 10.19981/j.CN23-1581/G3.2023.09.019. |
XIONG C Q, WEN X M, ZHANG Y N, et al. Research on fault diagnosis method of photovoltaic module power generation[J]. Technology Innovation and Application, 2023, 13(9): 77-81, 85. DOI: 10.19981/j.CN23-1581/G3.2023.09.019. | |
32 | 岳啸. 光伏发电系统的运行和维护[J]. 南方农机, 2018, 49(22): 173. DOI: 10.3969/j.issn.1672-3872.2018.22.157. |
YUE X. Operation and maintenance of photovoltaic power generation system[J]. China Southern Agricultural Machinery, 2018, 49(22): 173. DOI: 10.3969/j.issn.1672-3872.2018.22.157. | |
33 | KIM J, RABELO M, PADI S P, et al. A review of the degradation of photovoltaic modules for life expectancy[J]. Energies, 2021, 14(14): 4278. DOI: 10.3390/en14144278. |
34 | 李智华, 马浩强, 吴春华, 等. 基于三参数的光伏组件老化程度诊断[J]. 中国电机工程学报, 2022, 42(9): 3327-3337. DOI: 10.13334/j.0258-8013.pcsee.210754. |
LI Z H, MA H Q, WU C H, et al. Diagnosing the aging degree of photovoltaic modules based on three parameters[J]. Proceedings of the CSEE, 2022, 42(9): 3327-3337. DOI: 10.13334/j.0258-8013.pcsee.210754. | |
35 | 石凯, 李光明, 吴甫, 等. 光伏发电系统电气设备故障原因及处理措施分析[J]. 太阳能, 2023(3): 58-67. DOI: 10.19911/j.1003-0417.tyn20221209.03. |
SHI K, LI G M, WU F, et al. Analysis on causes and treatment measures of electrical equipment failure in PV power generation system[J]. Solar Energy, 2023(3): 58-67. DOI: 10.19911/j.1003-0417.tyn20221209.03. | |
36 | 孟祥云, 张大为, 王琦, 等. 基于ACCESS数据库的光伏组件隐裂信息管理[J]. 太阳能, 2021(10): 20-25. DOI: 10.19911/j.1003-0417.tyn20200817.01. |
MENG X Y, ZHANG D W, WANG Q, et al. Pv modules hidden crack information management based on access database[J]. Solar Energy, 2021(10): 20-25. DOI: 10.19911/j.1003-0417.tyn20200817.01. | |
37 | 王伯涛, 王忠阳, 连爱红. 光伏逆变器常见故障及排除方法[J]. 农村电工, 2018, 26(8): 38-39. DOI: 10.3969/j.issn.1006-8910.2018.08.039. |
WANG B T, WANG Z Y, LIAN A H. Common faults of photovoltaic inverter and their elimination methods[J]. Rural Electician, 2018, 26(8): 38-39. DOI: 10.3969/j.issn.1006-8910.2018.08.039. | |
38 | JAEN-CUELLAR A Y, ELVIRA-ORTIZ D A, OSORNIO-RIOS R A, et al. Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review[J]. Energies, 2022, 15(15): 5404. DOI: 10.3390/en15155404. |
39 | PREHODA E W, SCHELLY C, PEARCE J M. U. S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 167-175. DOI: 10.1016/j.rser.2017.04.094. |
40 | KHALIL I U, UL-HAQ A, MAHMOUD Y, et al. Comparative analysis of photovoltaic faults and performance evaluation of its detection techniques[J]. IEEE Access, 2020, 8: 26676-26700. DOI: 10.1109/ACCESS.2020.2970531. |
41 | 惠杰, 沈金荣, 孙贤贤. 智能光伏发电系统故障识别和定位方法研究[J]. 智能电网, 2016, 4(11): 1113-1116. DOI: 10.14171/j.2095-5944.sg.2016.11.010. |
HUI J, SHEN J R, SUN X X. Identification and location methods for intelligent PV system malfunctions[J]. Smart Grid, 2016, 4(11): 1113-1116. DOI: 10.14171/j.2095-5944.sg.2016.11.010. | |
42 | HAMMAD B, AL-ABED M, AL-GHANDOOR A, et al. Modeling and analysis of dust and temperature effects on photovoltaic systems' performance and optimal cleaning frequency: Jordan case study[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2218-2234. DOI: 10.1016/j.rser.2017.08.070. |
43 | BONACINA F, CORSINI A, CARDILLO L, et al. Complex network analysis of photovoltaic plant operations and failure modes[J]. Energies, 2019, 12(10): 1995. DOI: 10.3390/en12101995. |
44 | OMAÑA M, GROSSI M, METRA C. Early detection of photovoltaic system inverter faults[J]. Microelectronics Reliability, 2022, 135: 114594. DOI: 10.1016/j.microrel.2022.114594. |
45 | GEOFF W. Evaluating MPPT converter topologies using a MATLAB PV model[J]. Journal of Electrical & Electronics Engineering, Australia, 2001, 21(1): 49-55. |
46 | NAUGHTON B, HOUCHENS B, SUMMERVILLE B, et al. Design guidelines for deployable wind turbines for defense and disaster response missions [J]. Journal of Physics: Conference Series, 2022, DOI: DOI 10.1088/1742-6596/2265/4/042074. |
47 | 石港, 王伟, 雷志鹏, 等. 风力发电机组状态监测与故障诊断研究综述[J]. 山西电力, 2023(1): 43-46. DOI: 10.3969/j.issn.1671-0320.2023.01.010. |
SHI G, WANG W, LEI Z P, et al. Review on condition monitoring and fault diagnosis of wind turbines[J]. Shanxi Electric Power, 2023(1): 43-46. DOI: 10.3969/j.issn.1671-0320.2023.01.010. | |
48 | GAUDERN N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion[J]. Journal of Physics: Conference Series, 2014, 524: 012031. DOI: 10.1088/1742-6596/524/1/012031. |
49 | YU Y J, CAO H, YAN X Y, et al. Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor[J]. Neurocomputing, 2020, 376: 1-9. DOI: 10.1016/j.neucom.2019.09.071. |
50 | LIU W Y, TANG B P, HAN J G, et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 466-472. DOI: 10.1016/j.rser.2014.12.005. |
51 | MCMILLAN D, AULT G W. Quantification of condition monitoring benefit for offshore wind turbines[J]. Wind Engineering, 2007, 31(4): 267-285. DOI: 10.1260/030952407783123060. |
52 | REZAMAND M, KORDESTANI M, CARRIVEAU R, et al. A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-based PDF[J]. IEEE Sensors Journal, 2020, 20(4): 2023-2033. DOI: 10.1109/JSEN.2019.2948997. |
53 | JIANG G Q, JIA C L, NIE S Q, et al. Multiview enhanced fault diagnosis for wind turbine gearbox bearings with fusion of vibration and current signals[J]. Measurement, 2022, 196: 111159. DOI: 10.1016/j.measurement.2022.111159. |
54 | WEN X Q, XU Z A. Wind turbine fault diagnosis based on ReliefF-PCA and DNN[J]. Expert Systems with Applications, 2021, 178: 115016. DOI: 10.1016/j.eswa.2021.115016. |
55 | DUAN H, LU M, SUN Y T, et al. Fault diagnosis of PMSG wind power generation system based on LMD and MSE[J]. Complexity, 2020, 2020: 5306473. DOI: 10.1155/2020/5306473. |
56 | ZHANG W, ZHANG Z Z, YAO Q, et al. Fault diagnosis of wind turbine generator system based on PMI-LSSVM[J]. Journal of Physics: Conference Series, 2021, 2095(1): 012009. DOI: 10.1088/1742-6596/2095/1/012009. |
57 | 王旭东, 尹钊, 刘畅, 等. 储能技术在军事领域中的应用与展望[J]. 储能科学与技术, 2020, 9(S1): 52-61. DOI: 10.19799/j.cnki.2095-4239.2020.0207. |
WANG X D, YIN Z, LIU C, et al. Application and prospect of energy storage technology in military field[J]. Energy Storage Science and Technology, 2020, 9(S1): 52-61. DOI: 10.19799/j.cnki.2095-4239.2020.0207. | |
58 | LUCCHESE F C, CANHA L N, BRIGNOL W S, et al. A review on energy storage systems and military applications[C]// 2020 55th International Universities Power Engineering Conference (UPEC). IEEE, 2020. DOI: 10.1109/UPEC49904.2020.9209892. |
59 | 张鹏, 周建波, 郭恺超. 新能源电力系统中的储能技术[J]. 中国设备工程, 2023(5): 219-221. DOI: 10.3969/j.issn.1671-0711.2023.05.090. |
ZHANG P, ZHOU J B, GUO K C. Energy storage technology in new energy power system[J]. China Plant Engineering, 2023(5): 219-221. DOI: 10.3969/j.issn.1671-0711.2023.05.090. | |
60 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
61 | WANG H B, XU H, ZHAO Z Y, et al. An experimental analysis on thermal runaway and its propagation in cell-to-pack lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 211: 118418. DOI: 10.1016/j.applthermaleng.2022.118418. |
62 | AZZOUZ I, YAHMADI R, BRIK K, et al. Analysis of the critical failure modes and developing an aging assessment methodology for lithium iron phosphate batteries[J]. Electrical Engineering, 2022, 104(1): 27-43. DOI: 10.1007/s00202-021-01320-7. |
63 | ZHAO P, YANG S Y. On planar reaction front in condensed materials: Reduced model, propagation speed, reaction zone balance, and insights into battery thermal runaway[J]. Combustion and Flame, 2022, 245: 112346. DOI: 10.1016/j.combustflame.2022.112346. |
64 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. DOI: 10.12028/j.issn.2095-4239.2018.0165. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. DOI: 10.12028/j.issn.2095-4239.2018.0165. | |
65 | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090547. DOI: 10.1149/1945-7111/ab9569. |
66 | DONGSHENG R E N, XUNING F, XUEBING H A N, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957. |
67 | LEWERENZ M, MÜNNIX J, SCHMALSTIEG J, et al. Systematic aging of commercial LiFePO4|graphite cylindrical cells including a theory explaining rise of capacity during aging[J]. Journal of Power Sources, 2017, 345: 254-263. DOI: 10.1016/j.jpowsour. 2017.01.133. |
68 | GAO W K, ZHENG Y J, OUYANG M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. DOI: 10.1109/TIE.2018.2838109. |
69 | WU C, ZHU C B, GE Y W, et al. A review on fault mechanism and diagnosis approach for Li-ion batteries[J]. Journal of Nanomaterials, 2015, 2015: 631263. DOI: 10.1155/2015/631263. |
70 | LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. DOI: 10.1016/j.ensm.2020.06.042. |
71 | CHEN S Y, GAO Z H, SUN T J. Safety challenges and safety measures of Li-ion batteries[J]. Energy Science & Engineering, 2021, 9(9): 1647-1672. DOI: 10.1002/ese3.895. |
72 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: 100811. DOI: 10.1016/j.est.2019.100811. |
73 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239. 2021.0369. | |
74 | 田相军, 郭亚洲, 凌泽, 等. 锂离子动力电池滥用条件下热失控特性研究[J]. 电源技术, 2020, 44(5): 679-681, 692. DOI: 10.3969/j.issn.1002-087X.2020.05.009. |
TIAN X J, GUO Y Z, LING Z, et al. Thermal runaway characteristics study of lithium ion power battery under various abuse conditions[J]. Chinese Journal of Power Sources, 2020, 44(5): 679-681, 692. DOI: 10.3969/j.issn.1002-087X.2020.05.009. | |
75 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. DOI: 10.1016/j.jpowsour. 2014.11.017. |
76 | JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: 118760. DOI: 10.1016/j.apenergy. 2022.118760. |
77 | MD SAID M S, MOHD TOHIR M Z. Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104854. DOI: 10.1016/j.jlp.2022.104854. |
78 | NXUMALO Z C, TARWIREYI P, ADIGUN M O. Lithium-based batteries in tactical military applications: A review[C]// 2015 International Conference on Computer, Communications, and Control Technology (I4CT). IEEE, 2015: 575-579. DOI: 10.1109/I4CT.2015.7219644. |
79 | CHEN H D, BUSTON J E H, GILL J, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate[J]. Journal of Power Sources, 2020, 472: 228585. DOI: 10.1016/j.jpowsour.2020.228585. |
80 | WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. DOI: 10.1016/j.jhazmat.2019.06.007. |
81 | 胡斯航, 王世杰, 刘洋, 等. 锂离子电池热失控风险综述[J]. 电池, 2022, 52(1): 96-100. DOI: 10.19535/j.1001-1579.2022.01.023. |
HU S H, WANG S J, LIU Y, et al. Review on thermal runaway risk for Li-ion battery[J]. Battery Bimonthly, 2022, 52(1): 96-100. DOI: 10.19535/j.1001-1579.2022.01.023. | |
82 | GAO Y M, MOGHBELLI H, EHSANI M, et al. Investigation of high-energy and high-power hybrid energy storage systems for military vehicle application[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003: 1843-1850. DOI: 10.4271/2003-01-2287. |
83 | 郝奕帆, 祝夏雨, 王静, 等. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081. |
HAO Y F, ZHU X Y, WANG J, et al. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081. | |
84 | LI B, PAREKH M H, ADAMS R A, et al. Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255. DOI: 10.1038/s41598-019-49616-w. |
85 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. DOI: 10.1038/s41586-020-2081-7. |
86 | NONAKA T, OKUDA C, OKA H, et al. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2016, 325: 79-83. DOI: 10.1016/j.jpowsour.2016.06.013. |
87 | SHEN Y, ZOU B C, ZHANG Z D, et al. In situ detection of lithium-ion batteries by ultrasonic technologies[J]. Energy Storage Materials, 2023, 62: 102915. DOI: 10.1016/j.ensm.2023.102915. |
88 | SHABSHAB S C, LINDAHL P A, NOWOCIN J K, et al. Demand smoothing in military microgrids through coordinated direct load control[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 1917-1927. DOI: 10.1109/TSG.2019.2945278. |
89 | 孟明, 陈世超, 赵树军, 等. 新能源微电网研究综述[J]. 现代电力, 2017, 34(1): 1-7. DOI: 10.3969/j.issn.1007-2322.2017.01.001. |
MENG M, CHEN S C, ZHAO S J, et al. Overview on research of renewable energy microgrid[J]. Modern Electric Power, 2017, 34(1): 1-7. DOI: 10.3969/j.issn.1007-2322.2017.01.001. | |
90 | SEN S, KUMAR V. Microgrid control: A comprehensive survey[J]. Annual Reviews in Control, 2018, 45: 118-151. DOI: 10.1016/j.arcontrol.2018.04.012. |
91 | 苗若玖. 战场上的"无形杀手"——从石墨炸弹到电磁脉冲弹[J]. 知识就是力量, 2016(1): 82-85. DOI: 10.3969/j.issn.0529-150X.2016.01.027. |
MIAO R J. "Invisible killer" on the battlefield — From graphite bomb to electromagnetic pulse bomb[J]. Knowledge Is Power, 2016(1): 82-85. DOI: 10.3969/j.issn.0529-150X.2016.01.027. | |
92 | LI Y C, LIU Q H. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments[J]. Energy Reports, 2021, 7: 8176-8186. DOI: 10.1016/j.egyr.2021.08.126. |
93 | RANA M M, LI L, SU S W. Cyber attack protection and control of microgrids[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 602-609. DOI: 10.1109/JAS.2017.7510655. |
94 | ANANDA S, GU J C, YANG M T, et al. Multi-agent system fault protection with topology identification in microgrids[J]. Energies, 2016, 10(1): 28. DOI:10.3390/en10010028. |
[1] | 栗占伟, 樊东方, 曾超, 何雯倩, 何金. 考虑风光消纳的储能系统容量优化配置及运行策略研究[J]. 储能科学与技术, 2024, 13(8): 2713-2725. |
[2] | 李玉光, 刘翔, 梁艳召, 刘双振. 飞轮储能装置在轨道交通中的应用研究[J]. 储能科学与技术, 2024, 13(8): 2679-2686. |
[3] | 周茜茜, 黄勇, 崔可, 孙大南. 飞轮储能装置电机温度场仿真技术研究及试验验证[J]. 储能科学与技术, 2024, 13(8): 2589-2596. |
[4] | 陈晔, 李晋, 吴候福, 张少禹, 储玉喜, 卓萍. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. |
[5] | 柳长发, 付立衡, 张增丽, 李宏胜, 古敬彬. 高比例光伏接入的分布式储能容量自适应协调控制方法[J]. 储能科学与技术, 2024, 13(8): 2696-2703. |
[6] | 李澎煜, 林曦鹏, 王亮, 陈海生, 王艺斐. 竖直波纹流道内超临界氮气流动与传热研究[J]. 储能科学与技术, 2024, 13(8): 2605-2614. |
[7] | 李震, 陈巨龙, 李文林, 张裕, 杨婕睿, 陈思哲. 提升斜坡式重力储能AGC性能的混合储能优化运行方法[J]. 储能科学与技术, 2024, 13(8): 2761-2771. |
[8] | 朱文韬, 周杨, 徐艺敏, 施涛. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. |
[9] | 宋金伟, 宣东海, 王维佳, 孙飞, 宋彦. 基于声纹特征的储能型变压器运维检测技术[J]. 储能科学与技术, 2024, 13(8): 2758-2760. |
[10] | 代宇涵, 刘春, 周朋, 周俊鹏, 向思屿. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. |
[11] | 赵全胜, 朱玲, 刘尧伍, 郝军刚, 武明鑫. 压缩空气储能电站浅埋人工储气洞库设计基本理念和方法[J]. 储能科学与技术, 2024, 13(8): 2775-2784. |
[12] | 寇正, 王真龙. 储能设备在电力物联网领域中的作用效果分析[J]. 储能科学与技术, 2024, 13(8): 2785-2787. |
[13] | 许利君, 许利红, 宋方宇轩. 电化学储能电站的系统故障监测与诊断分析[J]. 储能科学与技术, 2024, 13(8): 2788-2790. |
[14] | 刘俊宏. 数据驱动在电力储能设备声纹识别和监测诊断中的应用[J]. 储能科学与技术, 2024, 13(8): 2835-2838. |
[15] | 曹勇, 杨大鹏, 朱清, 梁坤峰, 周训, 常艳琴. 大容量磷酸铁锂电池模组热失控研究[J]. 储能科学与技术, 2024, 13(7): 2462-2469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||