储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2589-2596.doi: 10.19799/j.cnki.2095-4239.2024.0231

• 储能材料与器件 • 上一篇    下一篇

飞轮储能装置电机温度场仿真技术研究及试验验证

周茜茜(), 黄勇(), 崔可, 孙大南   

  1. 中车株洲电机有限公司,湖南 株洲 412000
  • 收稿日期:2024-03-18 修回日期:2024-04-01 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 黄勇 E-mail:598398795@qq.com;huangyong08846@163.com
  • 作者简介:周茜茜(1988—),女,硕士,工程师,研究方向为电机热管理,E-mail:598398795@qq.com
  • 基金资助:
    国家重点研发计划(2023YFB2406300)

Research and test verification on simulation technology of motor temperature field of flywheel energy storage device

Qianqian ZHOU(), Yong HUANG(), Ke CUI, Danan SUN   

  1. CRRC Zhuzhou Locomotive Co. , Ltd, Zhuzhou 412000, Hunan, China
  • Received:2024-03-18 Revised:2024-04-01 Online:2024-08-28 Published:2024-08-15
  • Contact: Yong HUANG E-mail:598398795@qq.com;huangyong08846@163.com

摘要:

电机是飞轮储能系统实现电能-动能转换的关键部件,其体积小、功率大的设计特点以及中真空运行环境导致温升问题突出。水道的结构设计是增强散热的重要途径。本文从流动特性和冷却效率两个方面入手,对比螺旋水道、周向水道和轴向水道的进出口压力差、换热面积、换热系数等因素对散热的影响,综合考虑各因素最终确定电机的水道形式为周向水道。电机及其零部件的散热问题关系到飞轮储能系统能否安全运行,是飞轮储能技术发展中亟待解决的关键科学技术问题。准确计算温升是解决该难题的关键所在,对飞轮储能系统热管理的研究具有重要意义。本文对40 kW的飞轮储能系统进行了有限元热仿真,重点研究了模型简化、复杂结构等效处理、损耗分布等方面的内容,考虑传热过程中的热传导、热对流和热辐射,流体场、温度场多物理场耦合,设置初始水流量为25 L/min、温度为18 ℃,对电机进行温度场仿真计算。最后将计算结果与试验结果进行对比分析,误差在±3%范围内,验证了仿真计算的准确性和可靠性。该计算方法可为以后飞轮储能用电机设计作可靠参考。

关键词: 飞轮储能, 温度场, 电机, 辐射传热

Abstract:

The motor is the fundamental component of the flywheel energy storage system that realizes electric-kinetic energy conversion. Its design characteristics of small size, large power, and medium vacuum operation environment lead to prominent temperature increases. The structural design of the water channel is crucial for enhancing heat dissipation. Starting from two aspects of flow characteristics and cooling efficiency, this paper compares the influence of the spiral channel, circumferential channel, and axial channel inlet and outlet pressure differences, heat transfer area, heat transfer coefficient, and other factors on heat dissipation. It considers all factors to determine the channel form of the motor as a circumferential channel. The heat dissipation of the motor and its components is crucial for the safe operation of the flywheel energy storage system. This is a critical scientific and technical problem that needs to be addressed in the development of the flywheel energy storage technology. Accurately calculating the rise in temperature is crucial to solving this problem, which is of great significance to the research on the thermal management of flywheel energy storage systems. In this paper, the finite element thermal simulation of a 40 kW flywheel energy storage system is performed, focusing on model simplification, key component equivalence, loss distribution, and other aspects. The temperature field simulation calculation of the motor is performed considering the heat conduction, convection, and radiation in the heat transfer process, the multi-physical coupling of the fluid and temperature fields, the initial water flow rate of 25 L/min, and the temperature of 18 ℃. Finally, the calculation results are compared with the test results, and the error is within 3%, verifying the accuracy and reliability of the simulation calculation. The calculation method is a reliable reference for designing flywheel energy storage motors in the future.

Key words: flywheel energy storage, temperature field, electric machine, thermal radiation

中图分类号: