1 |
PEDRAM M, NAZARIAN S. Thermal modeling, analysis, and management in VLSI circuits: Principles and methods[J]. Proceedings of the IEEE, 2006, 94(8): 1487-1501. DOI: 10.1109/jproc.2006.879797.
|
2 |
罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
|
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
3 |
AL-OMARI S A B, MAHMOUD F, QURESHI Z A, et al. The impact of different fin configurations and design parameters on the performance of a finned PCM heat sink[J]. International Journal of Thermofluids, 2023, 20: DOI: 10.1016/j.ijft.2023.100476.
|
4 |
王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522. DOI: 10.19799/j.cnki.2095-4239.2020.0415.
|
|
WANG J L, XU X G, SUN T, et al. Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy Storage Science and Technology, 2021, 10(2): 514-522. DOI: 10.19799/j.cnki.2095-4239.2020.0415.
|
5 |
王凡, 杜昭, 阳康, 等. 泡沫金属内嵌石蜡水平蓄器内凝固放热实验[J]. 储能科学与技术, 2022, 11(11): 3667-3673. DOI: 10.19799/j.cnki.2095-4239.2022.0291.
|
|
WANG F, DU Z, YANG K, et al. Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube[J]. Energy Storage Science and Technology, 2022, 11(11): 3667-3673. DOI: 10.19799/j.cnki.2095-4239.2022.0291.
|
6 |
张金亚, 周文博, 程紫漪漪. 基于LBM的泡沫金属与翅片相变储能系统性能对比分析[J]. 储能科学与技术, 2024, 13(2): 598-607. DOI: 10.19799/j.cnki.2095-4239.2023.0570.
|
|
ZHANG J Y, ZHOU W B, CHENG Z. Performance comparison of metal foam and fin phase-change energy storage system based on LBM[J]. Energy Storage Science and Technology, 2024, 13(2): 598-607. DOI: 10.19799/j.cnki.2095-4239.2023.0570.
|
7 |
李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524.
|
|
LI S, HUANG J G, HE G J. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524.
|
8 |
张琦, 李银雷, 栗艳芳, 等. 膨胀石墨/多壁碳纳米管基共晶盐复合相变材料的制备及热特性[J]. 储能科学与技术, 2023, 12(8): 2435-2443. DOI: 10.19799/j.cnki.2095-4239.2023.0245.
|
|
ZHANG Q, LI Y L, LI Y F, et al. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials[J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. DOI: 10.19799/j.cnki.2095-4239.2023.0245.
|
9 |
LIU Y, ZHENG R W, LI J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review[J]. Renewable and Sustainable Energy Reviews, 2022, 168: DOI: 10.1016/j.rser.2022.112783.
|
10 |
ZHU W H, LEI F, ZHONG H, et al. Latent heat recovery of composite PCM for hybrid BTMSs based on micro-encapsulated phase change slurry[J]. Journal of Energy Storage, 2023, 72: DOI: 10.1016/j.est.2023.108330.
|
11 |
REN H L, DANG C, YIN L F, et al. Optimization research on battery thermal management system based on PCM and mini-channel cooling plates[J]. Case Studies in Thermal Engineering, 2024, 53: DOI: 10.1016/j.csite.2023.103880.
|
12 |
CHEN Y N, ZHUANG Y J, FENG J C, et al. Numerical investigation on flow and heat transfer characteristics in honeycomb-like microchannel heat sink encapsulated with phase change material[J]. Applied Thermal Engineering, 2023, 232: DOI: 10.1016/j.applthermaleng.2023.121060.
|
13 |
S R A K, SIVAN S, V C M, et al. Experimental and numerical investigation of solid-solid phase change material assisted heat sink with integrated heat pipe for electronic cooling[J]. Journal of Energy Storage, 2023, 59: DOI: 10.1016/j.est.2022.106494.
|
14 |
KONG D K, ZHANG Y C, LIU S T. Design of additively manufactured hybrid PCM-air heat sink with a two-stage channel for enhancing thermal performance[J]. Applied Thermal Engineering, 2023, 218: DOI: 10.1016/j.applthermaleng.2022.119325.
|
15 |
WANG Y, JASIM D J, MOHAMMAD SAJADI S, et al. Experimental study of phase change material (PCM) based spiral heat sink for the cooling process of electronic equipment[J]. Ain Shams Engineering Journal, 2024, 15(7): DOI: 10.1016/j.asej.2024.102793.
|
16 |
BLACK J R. Electromigration—A brief survey and some recent results[J]. IEEE Transactions on Electron Devices, 1969, 16(4): 338-347. DOI: 10.1109/T-ED.1969.16754.
|
17 |
肖玉麒, 曾轶, 范利武, 等. 大功率短时加热条件下相变储能式热沉瞬态性能及其优化的实验研究[J]. 工程热物理学报, 2014, 35(3): 533-537.
|
|
XIAO Y Q, ZENG Y, FAN L W, et al. An experimental study of transient performance and its improvement of a phase change heat storage-based heat sink under high-power pulsed heating[J]. Journal of Engineering Thermophysics, 2014, 35(3): 533-537.
|
18 |
FARZANEHNIA A, KHATIBI M, SARDARABADI M, et al. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management[J]. Energy Conversion and Management, 2019, 179: 314-325. DOI: 10.1016/j.enconman.2018.10.037.
|
19 |
KHAN Z, KHAN Z, GHAFOOR A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132-158. DOI: 10.1016/j.enconman.2016.02.045.
|
20 |
XU Y R, FAN H M, SHAO B X. Experimental and numerical investigations on heat transfer and fluid flow characteristics of integrated U-shape micro heat pipe array with rectangular pin fins[J]. Applied Thermal Engineering, 2020, 168: DOI: 10.1016/j.applthermaleng.2019.114640.
|