储能科学与技术

• 储能测试与评价 •    

新型迷你通道-相变热沉实验研究

李煜1(), 张俊雄2, 樊洪明1   

  1. 1.北京工业大学,绿色建筑环境与节能技术北京市重点实验室,北京 100124
    2.中船重工(北京)科研管理有限公司,北京 100097
  • 收稿日期:2024-03-15 修回日期:2024-04-05
  • 通讯作者: 李煜 E-mail:Li-yu@emails.bjut.edu.cn
  • 作者简介:李煜(1999-),女,硕士研究生,研究方向为芯片散热技术,E-mail: Li-yu@emails.bjut.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFB0601601)

Experimental study of a novel mini-channel phase change heat sink

Yu Li1(), Jun-xiong Zhang2, Hong-ming Fan1   

  1. 1.Beijing Key Laboratory of Green Building and Energy-Efficiency Technology, Beijing University of Technology, Beijing 100124, China
    2.CSIC (Beijing) Research Management Co. , Ltd. Beijing, 100097, China.
  • Received:2024-03-15 Revised:2024-04-05
  • Contact: Yu Li E-mail:Li-yu@emails.bjut.edu.cn

摘要:

电子元件的集成化、微型化等特点加剧了芯片的热问题,基于相变材料的被动式冷却技术已无法满足功率波动的高功率电子设备的需求。本文将相变技术与主动冷却技术相结合,提出了一种用于风冷散热的新型迷你通道-相变热沉结构。该结构改善了相变材料导热性能差的问题,也解决了相变材料熔化后泄露的问题。通过实验测试了不同热流密度、不同风速对其热控性能的影响,总结了热沉的蓄放热特性,并与未填充相变材料热沉的热控性能进行了对比。实验中热流密度变化范围为1.81-3.47 W/cm2,风速变化范围为0-4 m/s。研究表明:热流密度的增大和风速的降低均会导致热沉温控时间的缩短。2 m/s风速足以满足热流密度小于2.91 W/cm2的芯片散热需求,4 m/s风速可以在热流密度为3.47 W/cm2的情况下将热沉底面温度维持在70 °C。与未填充相变材料热沉相比,本研究提出的热沉可以起到延长温控时长,降低稳态温度的作用。此外,风扇的开启可以有效缩短热沉的冷却时间,对于间歇性工作的电子设备具有重要的应用意义。研究结果可为迷你通道-相变热沉在实践中的应用提供参考依据。

关键词: 相变蓄热, 热控性能, 迷你通道, 风冷散热

Abstract:

The integration and miniaturization of electronic components have aggravated the heat flux problem of chips, and the passive cooling technology based on phase-change materials can no longer meet the requirements of high-power electronic devices with power fluctuations. In this paper, a novel mini-channel phase-change heat sink structure for air-cooled heat dissipation is proposed by combining phase-change technology with active cooling technology. The structure improves the problem of poor thermal conductivity of phase change materials and also solves the problem of leakage after melting of PCM. The effects of different heat fluxes and different air velocities on its thermal control performance are experimentally tested. The heat storage and release characteristics of hybrid heat sink are summarized and the thermal control performance is compared with unfilled PCM heat sink. In the experiment, the range of heat flux is 1.81-3.47 W/cm2, and the range of air speed is 0-4 m/s. The result shows that: the increase of the heat flux and the decrease of the air velocity leads to the shortening of the temperature control time. The 2 m/s air velocity is sufficient to meet the heat dissipation demand with the heat flux less than 2.91 W/cm2. The 4 m/s air velocity can maintain the heat sink substrate temperature at 70 °C with a 3.47 W/cm2 heat flux. Compared with the unfilled PCM heat sink, the heat sink proposed in this study can extend the temperature control time and reduce the steady-state temperature. In addition, the opening of the fan can effectively shorten the cooling time of the heat sink, which is important for the application of electronic devices that work intermittently. The results of this study can provide a reference for the practical application of mini-channel phase change heat sinks.

Key words: Phase change thermal storage, Thermal control performance, mini-channel, air cooling

中图分类号: