1 |
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58.
|
|
XUE F, MA X M, YOU Y J. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58.
|
2 |
CHEN H, TAN C, LIU J, et al. Supercritical air energy storage system: WO2011054169 [P/OL]. 2012-09-19.
|
3 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177. DOI: 10.1016/j.enconman.2016.01.051.
|
4 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied Energy, 2017, 199: 96-106. DOI: 10.1016/j.apenergy.2017.04.068.
|
5 |
WANG P Y, ZHAO X L, LIU Z H. Simulated research of enhanced heat transfer characteristics of LNG in rectangular small channels with circumference micro-grooves[J]. Journal of Thermal Science, 2023, 32(3): 1023-1033. DOI: 10.1007/s11630-023-1718-x.
|
6 |
SHI H N, CHANG H L, MA T, et al. Prediction of equivalent thermal conduction resistance of printed circuit heat exchangers[J]. Journal of Thermal Science, 2022, 31(6): 2281-2292. DOI: 10.1007/s11630-022-1675-9.
|
7 |
AKHURST M, ATKINS A, UK R, et al. Liquid air in the energy and transport systems[R]. The Centre for Low Carbon Futures, 2013.
|
8 |
STRAHAN D. Liquid air technologies-a guide to the potential[R]. Liquid Air Energy Network, 2013.
|
9 |
VECCHI A, LI Y L, DING Y L, et al. Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives[J]. Advances in Applied Energy, 2021, 3: DOI: 10.1016/j.adapen.2021.100047.
|
10 |
LIAO Z R, ZHONG H, XU C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: DOI: 10.1016/j.apenergy.2020.115132.
|
11 |
ZHANG P, HUANG Y, SHEN B, et al. Flow and heat transfer characteristics of supercritical nitrogen in a vertical mini-tube[J]. International Journal of Thermal Sciences, 2011, 50(3): 287-295. DOI: 10.1016/j.ijthermalsci.2010.06.014.
|
12 |
ZHU X J, LYU Z H, YU X, et al. Heat transfer enhancement of supercritical nitrogen flowing downward in a small vertical tube: Evaluation of system parameter effects[J]. Journal of Thermal Science, 2020, 29(6): 1487-1503. DOI: 10.1007/s11630-020-1377-0.
|
13 |
NEGOESCU C C, LI Y L, AL-DURI B, et al. Heat transfer behaviour of supercritical nitrogen in the large specific heat region flowing in a vertical tube[J]. Energy, 2017, 134: 1096-1106. DOI: 10.1016/j.energy.2017.04.047.
|
14 |
HAN C L, XIN J Q, HAN F M, et al. Study on the three-dimensional heat flow field of supercritical nitrogen in a micro-channel plate heat exchanger[J]. Cryogenics, 2022, 126: DOI: 10.1016/j.cryogenics.2022.103545.
|
15 |
ZHAO Z C, ZHANG X, ZHAO K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger[J]. Applied Thermal Engineering, 2017, 126: 717-729. DOI: 10.1016/j.applthermaleng.2017.07.193.
|
16 |
YANG S, ZHAO Z C, ZHANG Y, et al. Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger[J]. Processes, 2021, 9(5): DOI: 10.3390/pr9050861.
|
17 |
QU Y L, LIN X P, WANG L, et al. Cryogenic energy storage characteristics in cascaded packed beds[J]. Journal of Energy Storage, 2023, 73: DOI: 10.1016/j.est.2023.108867.
|
18 |
W M Kays. Compact heat exchangers[M]. Third Edition. Stanford University.
|
19 |
JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. DOI: 10.1016/0142-727X(89)90049-0.
|
20 |
MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433.
|
21 |
过增元. 换热器中的场协同原则及其应用[J]. 机械工程学报, 2003, 39(12): 1-9. DOI: 10.3321/j.issn: 0577-6686.2003.12.001.
|
|
GUO Z Y. Principle of field coordination in heat exchangers and its applications[J]. Chinese Journal of Mechanical Engineering, 2003, 39(12): 1-9. DOI: 10.3321/j.issn: 0577-6686.2003.12.001.
|
22 |
CHEN M H, SUN X D, CHRISTENSEN R N. Thermal-hydraulic performance of printed circuit heat exchangers with zigzag flow channels[J]. International Journal of Heat and Mass Transfer, 2019, 130: 356-367. DOI: 10.1016/j.ijheatmasstransfer.2018.10.031.
|
23 |
DITTUS F W. Heat transfer in automobile radiators of the tubular type[J]. Univ of California Pub, Eng, 1930, 2(13): 443-461.
|