储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1877-1887.doi: 10.19799/j.cnki.2095-4239.2024.0099

• 储能系统与工程 • 上一篇    下一篇

新型喷射增效压缩空气储能系统性能

郭祚刚1(), 刘通1, 徐敏1, 徐申2, 陈光明2, 郝新月2()   

  1. 1.南方电网科学研究院,广东 广州 510663
    2.浙江大学制冷与低温研究所,浙江 杭州 310027
  • 收稿日期:2024-02-01 修回日期:2024-02-27 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 郝新月 E-mail:guozg@csg.cn;xinyuehao@zju.edu.cn
  • 作者简介:郭祚刚(1985—),男,博士,主要从事智能配用电技术、新型储能技术研究,E-mail:guozg@csg.cn
  • 基金资助:
    南方电网公司科技项目(KYKJXM20210214)

Theoretical analysis of a novel ejector augmented compressed air energy storage system

Zuogang GUO1(), Tong LIU1, Min XU1, Shen XU2, Guangming CHEN2, Xinyue HAO2()   

  1. 1.Electric Power Research Institute, CSG, Guangzhou 510663, Guangdong, China
    2.Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2024-02-01 Revised:2024-02-27 Online:2024-06-28 Published:2024-06-26
  • Contact: Xinyue HAO E-mail:guozg@csg.cn;xinyuehao@zju.edu.cn

摘要:

针对压缩空气储能系统恒压运行会存在较大的压力损失,提出了一种新型喷射增效压缩空气储能系统,采用两级喷射器引射膨胀机做功后的乏气,回收部分压力能的同时增加膨胀机进气流量,从而提高系统的发电能力。建立新系统热力学模型,与相同运行参数下传统系统进行性能对比,并深入探究两级喷射器工作流体压力、引射流体压力以及中间压力对系统性能的影响规律。研究结果表明,当工作流体压力、引射流体压力以及中间压力升高时,系统全周期循环效率均呈近似抛物线变化趋势,进一步得到喷射器最佳工作参数;在最佳工况下,系统全周期循环效率为63.32%,与传统节流降压方式循环效率为62.41%相比,提升了0.91%。研究为喷射增效压缩空气储能系统减少节流损失、提高性能提供了理论依据。

关键词: 压缩空气储能, 两级喷射器, 恒压运行, 循环效率

Abstract:

This study proposes a novel ejector–augmented adiabatic compressed air energy storage system designed to mitigate the significant pressure loss observed in conventional systems during constant-pressure operation. It employs a two-stage ejector to harness the exhaust gas after expansion, thereby recovering part of the lost pressure energy and enhancing the expander's inlet flow rate to boost the system's power generation capacity. We developed a thermodynamic model for this novel system and performed a comparative analysis with conventional systems using identical operating parameters. This study focuses on the effects that the primary fluid pressure, secondary fluid pressure, and intermediate pressure within the two-stage ejector have on system performance. Results reveal that increasing these pressures causes the full-cycle efficiency of the system to follow an approximate parabolic trend. Furthermore, the optimal operating parameters of the ejector have been identified. Under optimal working conditions, the system's full-cycle efficiency is 63.32%, indicating an improvement of 0.91% over the 62.41% efficiency achieved by the conventional throttling-down method. Based on the above, this study establishes a theoretical foundation for enhancing the ejector efficiency of compressed air energy storage systems, aiming to reduce throttling loss and improve overall performance.

Key words: compressed air energy storage, two-stage ejector, constant pressure operation, cycle efficiency

中图分类号: